
Embedded Coder® Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Release Notes
© COPYRIGHT 2011–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

R2017a

Code Generation from MATLAB Code 1-2

SIL and PIL execution improvements for MATLAB Coder . . . 1-2
Verification of PIL target connectivity configuration 1-2
Code Replacement for MATLAB Coder: Create code

replacement library entries for target implementations that
require data alignment . 1-3

Model Architecture and Design . 1-4

AUTOSAR arxml File Import: Flexibly model imported
periodic, asynchronous, and initialization runnables 1-4

AUTOSAR DESC elements populate Simulink Description
fields . 1-5

External mode code generation for a model containing inline
variant blocks . 1-6

Code generation support for Variant Subsystems containing
global signals . 1-6

Preprocessor conditionals guard content inside and outside of
function-call site . 1-6

Data, Function, and File Definition . 1-9

Function Interface: Return nonvoid type for scalar output of
reusable functions . 1-9

Utility to generate Simulink representations of struct and
enum types defined by external C code 1-13

Code Generation . 1-14

Cross-Release Code Integration: Reuse model reference code
generated from previous releases 1-14

v

Code Replacement for Cast and Multiply Operations: Detect
overflow and rounding mode equivalence for increased
matches and code efficiency . 1-14

More information in code generation report summary 1-15
Code Interface Report: Includes entry-point function for code

generated from Reset Function block 1-15
Shared utility memory section associated with subfunctions 1-15
Inline traceability for generated code 1-16
Clear file section content from TLC file 1-16
Identifier case control with token decorators and custom text

token $U . 1-17
$U Token for Specifying Text in Generated Identifiers . 1-17
Case Control with Token Decorators 1-17

Name change for AUTOSAR local temporary variables 1-18
Additional checks against MISRA C:2012 guidelines in Code

Generation Advisor . 1-18

Deployment . 1-19

TI Code Composer Studio (CCS): Generate projects for CCS
versions 5 and 6 with Embedded Coder Target for TI
C2000 . 1-19

Customize generated makefiles for S-Functions 1-19
Release notes and workflow overview documentation added to

AUTOSAR support package . 1-19
SPI and I2C blocks added to TI C2000 support package . . . 1-19
CCS v3.3 IDE automation support for TI C2000 has been

removed . 1-20
Real-time multitasking profiling for TI C2000 1-20
TCP and UDP blocks added to STMicroelectronics

STM32F746G-Discovery board . 1-20
MATLAB Coder PIL with STMicroelectronics STM32F4-

Discovery Board . 1-21
External Mode and PIL supported over TCP/IP by

STMicroelectronics STM32F746G-Discovery board 1-23
Linux Support: Connect to ARM Cortex-M processor on Linux

platform . 1-23
ARM Cortex-R optimized code . 1-23
Develop a Target for ARM Cortex-R processors 1-24
Support for Wind River VxWorks RTOS will be removed . . . 1-24

Performance . 1-25

vi Contents

Data Copy Reduction: Generate fewer data copies and use less
RAM for buses, data stores, and model blocks 1-25

Data copy reduction for Bus Assignment block 1-25
Data copy reduction for Data Store Read and Data Store

Write blocks . 1-27
More efficient code for Model blocks 1-30

Code Efficiency: Improve loop fusion for Sum of Elements
blocks and generate less code for temporal logic in
Stateflow . 1-34

Loop fusion for Sum of Elements blocks 1-34
More efficient code for temporal logic in Stateflow 1-37

Data copy reduction for Merge blocks 1-37
More instances of buffer reuse for blocks and subsystems in a

chain . 1-40
Buffer reuse for a chain of reusable and nonreusable

subsystems . 1-41
Buffer reuse for a chain of reusable subsystems 1-43

Improved buffer reuse due to changes in block execution
order . 1-44

More efficient code for Bus Creator blocks 1-46
Buffer reuse for Variant Source blocks 1-47

Verification . 1-50

SIL and PIL Testing: Log signals inside exported functions
and stream signals to Simulation Data Inspector during
simulation . 1-50

Verification of PIL target connectivity configuration 1-50

Check bug reports for issues and fixes 1-52

R2016b

Code Generation from MATLAB Code 2-2

Static code metrics report for C++ code 2-2
Verification of size_t and ptrdiff_t hardware settings 2-2
Verification of PIL target connectivity configuration 2-2
Optimization for array indexing in loops 2-2

vii

Reduction of the Intel Performace Primatives (IPP) code
replacement libraries (CRL) . 2-3

Model Architecture and Design . 2-4

AUTOSAR Basic Software (BSW) Services: Simulate BSW
including Diagnostic Event Manager (DEM) and NVRAM
Manager (NvM) . 2-4

AUTOSAR Parameters: Model STD_AXIS and COM_AXIS
lookup table parameters, export SwRecordLayouts, and
apply SwAddrMethods . 2-4

AUTOSAR STD_AXIS and COM_AXIS lookup tables . . 2-5
AUTOSAR port-based and internal calibration

parameters . 2-5
AUTOSAR SwRecordLayouts for lookup tables 2-6
AUTOSAR SwAddrMethods for measurement and

calibration tools . 2-6
AUTOSAR startup, reset, and shutdown modeling 2-7
AUTOSAR external trigger event communication 2-8
AUTOSAR support for JMAAB model architecture 2-8
AUTOSAR ExplicitReceiveByVal data access mode for receiver

ports . 2-9
AUTOSAR ModeSenderPorts and ModeSwitchPoints for

application mode management . 2-10
AUTOSAR reference element definitions for sharing among

components and services . 2-11
ERT Target Code Generation: Remove unreachable reset and

disable functions to reduce dead code 2-12
Conditional compile time check for imported macros with
ImportedDefine custom storage class 2-13

Additional guarding of global data for variant systems 2-13

Data, Function, and File Definition 2-18

Simulink Function Code Interface: Configure generated C/C+
+ function interfaces for Simulink Function and Function
Caller blocks . 2-18

ERT default value for configuration parameter
ParameterTunabilityLossMsg 2-19

Code Generation . 2-20

Cross-Release Code Integration: Reuse code generated from
earlier releases . 2-20

viii Contents

Compound Operation Code Replacement: Replace "Multiply
Shift Right Arithmetic" and "Multiply Divide" in generated
code with a single custom operation 2-21

ARXML import/export and C code generation for latest
AUTOSAR 4.2 and 3.2 standard revisions 2-21

AUTOSAR code replacement library enhancements 2-22
Static code metrics report for C++ code 2-22
Static code metrics data produced by Polyspace 2-22
Streamlined report pane for easier model configuration 2-22
Improved traceability between model and code 2-23
Code replacement enhancements . 2-24
$I macro changed for argument names used as input and

output . 2-24
Improved compliance with MISRA C:2012 Rules 10.1, 10.5, and

10.8 . 2-24
MISRA C:2012 Rule 10.1 . 2-25
MISRA C:2012 Rules 10.5 and 10.8 2-26

Improved compliance with MISRA AC AGC Rule 12.6 2-27
Use default installation folder on Windows system with ReFS

file system . 2-28

Deployment . 2-30

Cortex-M7 Target Support Package: Generate code for
STM32F746G-Discovery Board . 2-30

Added Embedded Coder Support Package for ARM Cortex-R
Processors . 2-30

Improved External mode over serial communication 2-31
New blocks added to TI’s C2000 support package 2-31
Change in name and the base product for the FRDM-K64F and

the FRDM-KL25Z support packages 2-31
Support for TI's C5000 DSPs has been removed 2-32
Support for TI’s C6000 has been removed 2-32
Support for Wind River VxWorks RTOS will be removed . . . 2-32
Support for idelink_ert.tlc will be removed 2-32

Performance . 2-33

Data Reuse and Memory Reduction: Reuse global data for
nonreusable subsystems and reduce data copies with user-
specified buffers . 2-33

Buffer reuse across nonreusable subsystems 2-33
Buffer reuse for multiple signals in a path 2-34

ix

Code Optimizations: Generate more efficient code with select-
assign-iterator pattern and matrix padding operations . . 2-36

Data copy reduction for select-assign-iterator modeling
pattern . 2-36

Data copy reduction for matrix padding operations . . . 2-38
Display of code execution times for model component 2-40
More efficient code for array element assignments 2-41
Loop fusion for nested for loops . 2-43
More efficient initialization code for root-level inports 2-45

Loop fusion in model_initialize function 2-45
One iteration variable for multiple for loops 2-47

More efficient code for Boolean expressions 2-49

Verification . 2-51

Verification of size_t and ptrdiff_t hardware settings 2-51
Verification of PIL target connectivity configuration 2-51
Signal range checking in SIL and PIL simulations 2-51
SIL and PIL block support for Simulink Function and Function

Caller blocks . 2-51

Check bug reports for issues and fixes 2-52

R2016a

Code Generation from MATLAB Code 3-2

Export data by using ExportedDefine storage class 3-2
SIL execution returns standard output and standard error

streams . 3-2

Model Architecture and Design . 3-4

Compile-Time Dimensions: Generate compiler directives
(#define) for implementing signal dimensions 3-4

Compile-Time Variants: Generate compiler directives (#if) for
variant choices specified with Variant Source and Variant
Sink blocks . 3-5

C++ Code Generation: Use referenced models with
multitasking, export-functions, and virtual buses 3-5

x Contents

MISRA C:2012 Compliance: Check block names and
Assignment blocks by using the Model Advisor 3-6

AUTOSAR Round Trip: Automate model additions for update
and merge of ARXML files . 3-6

Comment change in generated code 3-7
Variants in AUTOSAR component modeling 3-7

AUTOSAR variants in ports and runnables 3-8
AUTOSAR variants in array sizes 3-8

AUTOSAR DataReceivedEvents for receiver ports in
ImplicitReceive data access mode 3-9

AUTOSAR LiteralPrefix for enumerations in
IncludedDataTypeSets . 3-10

Programmatic validation and synchronization of AUTOSAR
model configurations . 3-10

Data, Function, and File Definition 3-11

In/Out Arguments: Specify same variable name for in/out
arguments of MATLAB Function and Model blocks 3-11

Buffer reuse across Model blocks 3-11
Buffer reuse across MATLAB Function blocks 3-14

Custom Storage Class Type AccessFunction 3-15
Creation of custom storage classes for macros defined by

compiler options . 3-15
Generation of ERT S-functions that represent variant controls

as preprocessor conditionals . 3-16

Code Generation . 3-17

Default style C++ interface replaces the void-void style C++
interface . 3-17

Compiler warning limitation removed for portable word sizes in
SIL simulations . 3-17

AUTOSAR arxml round trip . 3-18
CompuMethods with LINEAR and TEXTTABLE COMPU-

SCALEs . 3-19
PredefinedVariants import and export 3-19
Enhanced control of AUTOSAR package path

specification . 3-20
Improved AUTOSAR library support for Mfx functions 3-20
AUTOSAR target no longer supports building wrapper

subsystem as AUTOSAR SW-Component 3-21
Root model name in generated identifier for shared utility

files . 3-21

xi

Improved configuration parameter defaults for Embedded
Coder targets . 3-21

Streamlined code generation panes for easier model
configuration . 3-22

Code Generation Pane . 3-23
Code Generation > Interface Pane 3-23
Code Generation > Debug Pane 3-24
Code Generation > Verification Pane 3-24
Data Import/Export Pane . 3-24
Diagnostics Pane . 3-25
Diagnostics > Data Validity Pane 3-25
Diagnostics > Saving Pane . 3-25
Diagnostics > Solver Pane . 3-25
Optimization Pane . 3-26
Optimization > Signals and Parameters Pane 3-26
Simulation Target Pane . 3-26
Simulation Target > Custom Code Pane 3-26
Simulation Target > Symbols Pane 3-27

Build button removed from Configuration Parameters dialog
box . 3-27

Improved web view for code generation report 3-27
Dependent parameters not added to custom code generation

objective . 3-28
Removal of leading underscore character in macro type

definitions . 3-28

Deployment . 3-30

Hardware implementation parameters enabled by default . . 3-30
MATLAB Coder PIL With ARM Cortex-A: Verify and profile

ARM optimized code with Altera SoC and Xilinx Zynq
hardware . 3-30

Updates to support package for Texas Instruments C2000
processors . 3-30

Support package for Freescale FRDM-K64F board 3-31
Support for TI’s C5000 DSPs will be removed 3-31
Support for TI’s C6000 DSPs will be removed 3-31
Change in base product for ARM Cortex-Based VEX

Microcontroller support package 3-31

Performance . 3-32

xii Contents

Data Buffer Reuse: Use same variable for multiple signals
in a path by using the same Reusable storage class
specification . 3-32

Reuse input, output, and state of Delay block 3-32
Initialization code occurs once after start code in

model_initialize function . 3-32
Reset function improves initialization code optimization . . . 3-36
Removal of unnecessary rtmIsFirstInitCond flag 3-38
Optimized code for models containing logical operator blocks 3-40
Improved code for conditional expressions involving Boolean

expressions . 3-41
memset Optimization for more scenarios 3-43

memset optimization for assigning a constant value to
fields of a structure array . 3-44

memset optimization for array element assignments . . 3-45
memset optimization for consecutive assignments that

define a continuous write . 3-47
Changes to meaning of createCRLEntry wildcard syntax for

fixed-point data . 3-49
Code replacements involving root-level I/O variables and data

alignment . 3-50

Verification . 3-52

SIL/PIL Data Access: Use vector Get/Set custom storage class
and C++ parameter access methods 3-52

SIL/PIL support for variant condition propagation 3-52
SIL simulation returns standard output and standard error

streams . 3-52
Linux SIL/PIL support for LDRA Testbed 3-53

Check bug reports for issues and fixes 3-54

R2015aSP1

Bug Fixes

Check bug reports for issues and fixes 4-2

xiii

R2015b

Code Generation from MATLAB Code 5-2

MATLAB Coder Storage Classes: Easily import and export data
by using storage classes . 5-2

MATLAB Coder PIL With ARM Cortex-A: Verify and profile
ARM optimized code with BeagleBone Black hardware . . . 5-3

Code generation assumptions verified during PIL execution . 5-3
Control of signed right shifts in generated code 5-4
Detection of multiword operations . 5-5

Model Architecture and Design . 5-6

MISRA-C 2012: Comply with mandatory and required rules . 5-6
AUTOSAR 4.1.3 and 4.2: Import and export ARXML and

generate code for latest AUTOSAR standard 5-7
AUTOSAR sender-receiver modeling 5-7

IsUpdated API for receiver ports 5-8
Data element invalidation policies on sender ports 5-8
End-to-end protection for sender and receiver ports 5-8
DataReceiveErrorEvent for receiver ports 5-9
Rte_IWriteRef for sender ports 5-9

AUTOSAR client-server modeling . 5-10
AUTOSAR error status . 5-10
AUTOSAR NVRAM memory services 5-11

AUTOSAR nonvolatile data communication modeling 5-12
AUTOSAR component behavior modeling 5-14

IRVs in feedback loops . 5-14
Constant memory with const or volatile type qualifiers 5-15

AUTOSAR COM_AXIS lookup table modeling 5-15
Embedded Coder model templates . 5-16
Removal of uncalled Disable functions from generated code 5-16
Enhancement to option for generating preprocessor

conditionals . 5-17

Data, Function, and File Definition 5-19

Tokenized function names for custom storage class GetSet . 5-19

Code Generation . 5-20

xiv Contents

Embedded Coder Quick Start: Quickly configure model to
generate reusable and efficient code 5-20

Internationalization: Generate and review code containing
mixed languages for different locales 5-20

MISRA C:2012 code generation objective 5-21
Compatibility Considerations 5-21

AUTOSAR arxml round-trip . 5-21
Editable AUTOSAR display format for calibration 5-22
Configurable export of AUTOSAR internal data

constraints . 5-22
AUTOSAR reference bases . 5-22
AUTOSAR-typed per-instance memory import 5-23

Toolchain controls for AUTOSAR code generation 5-24
AUTOSAR RTE file generation enhanced for SIL and PIL . . 5-24
Lookup table blocks with new even spacing specification

generate AUTOSAR compatible IFX library routines 5-26
Control use of signed shifts in generated code 5-26
Code generation report with operator traceability 5-26

Deployment . 5-27

Hardware Implementation Selection: Quickly generate code for
popular embedded processors . 5-27

Code Replacement Tool uses simplified specification 5-29
Code replacement support for new lookup table breakpoint

specification . 5-29
Support for Analog Devices VisualDSP++ will be removed . . 5-30

Performance . 5-31

RAM/ROM Optimization Improvements: Generate more
efficient code using reusable storage class and converting
data copies to pointer assignments 5-31

Reuse input and output of a block or subsystem 5-31
More efficient code for large data sets 5-31

Live Execution Profiling: View PIL profile results during run-
time . 5-33

Enhanced support for buffer reuse at the root-level input and
output ports . 5-33

Reusable custom storage class for model block input and
output ports . 5-33

Combined input and output arguments with function
prototype control . 5-35

More efficient code for small subsystems 5-36

xv

More efficient code for Simulink.Bus objects 5-38
Enhanced local variable reuse . 5-40
Enhanced consolidation of for loops 5-42

Verification . 5-45

Faster SIL and PIL Verification Workflow 5-45
Code generation assumptions verified during PIL simulation 5-45
SIL and PIL support for C++ class root-level I/O access

methods . 5-45
Removal of Generate code only parameter restriction . . 5-46
Removal of scheduling limitations that caused algebraic

loops . 5-46

Check bug reports for issues and fixes 5-2

R2015a

Code Generation from MATLAB Code 6-2

Indent style and size control for generated C/C++ code 6-2
Improved MISRA-C compliance for bitwise operations on signed

integers . 6-3
Improved MISRA-C type cast compliance 6-4

Model Architecture and Design . 6-6

AUTOSAR improvements including multi-runnable modeling
and code efficiency . 6-6

Combined input/output arguments with function prototype
control . 6-6

Improved MISRA-C compliance for bitwise operations on signed
integers . 6-7

AUTOSAR multi-runnable modeling using Simulink rate-based
multitasking . 6-7

Enhanced modeling with AUTOSAR system constants 6-8
AUTOSAR CompuMethod enhancements 6-8
Preprocessor conditionals for single variant choice 6-9

Data, Function, and File Definition 6-10

xvi Contents

Control of Boolean and data type limit identifiers in generated
code . 6-10

Names of built-in storage classes reserved 6-10

Code Generation . 6-12

Simplified Code Replacement Library specification plus more
replacements involving integer operations 6-12

Simplified Code Replacement Library specification . . . 6-12
More replacements involving integer operations 6-12

Improved readability for shared header file 'rtwtypes.h' 6-13
New and enhanced Model Advisor checks for MISRA-C

compliance . 6-14
Improved traceability for AUTOSAR RTE implicit read 6-15
Configurable aliveTimeout value for AUTOSAR ports 6-16
AUTOSAR calibration parameter export for COM_AXIS lookup

tables . 6-16
Fixed-point scaling information in Code Interface Report . . 6-17
Unsigned integer minimum data limit identifiers 6-17
Default iteration variable data type 6-18

Deployment . 6-20

Code Replacement Viewer enhanced 6-20
Model configuration parameter considered for division operator

code replacements . 6-20
Lookup table algorithm parameter specification

enhancements . 6-20
Header file for Basic Linear Algebra Subroutine

(BLAS) multiplication function code replacement example
changed . 6-21

Code replacement detection of overflow and rounding mode
equivalence . 6-21

Feature being removed in a future release 6-21

Performance . 6-22

More efficient code involving model references, unit delays, and
global data references . 6-22

Reusable custom storage class for Model block input/
output ports . 6-22

Reuse input, output, and state of Unit Delay block . . . 6-22
Enhanced variable reuse optimizations 6-23
Strategic caching of global variable references 6-25

xvii

Enhanced global variable localization optimizations . . 6-26
Conditional compilation of Data Store Memory block memory

definition and declaration . 6-28
Ternary Boolean expressions transformed into assignment

statements . 6-30

Verification . 6-31

SIL/PIL for protected models and SIL source code debugging
using Microsoft Visual Studio Express 6-31

SIL/PIL for protected models . 6-31
SIL source code debugging using Microsoft Visual Studio

Express . 6-32
Model block SIL/PIL parameter renamed 6-32
ERT S-Function block no longer supported for AUTOSAR . . 6-32
SIL/PIL support for replacing boolean data type with int8 6-32
SIL/PIL support for generated access methods for C++ model

class root-level I/O signals . 6-33

Check bug reports for issues and fixes 6-34

R2014b

Code Generation from MATLAB Code 7-2

Processor-in-the-loop (PIL) verification and execution profiling
for MATLAB code . 7-2

Software-in-the-loop verification improvements for MATLAB
Coder . 7-2

Additional options for custom banners and comments in C and
C++ code generated from MATLAB code 7-3

Highlighting of potential data type issues in code generation
reports . 7-4

Model Architecture and Design . 7-8

AUTOSAR targeting updates including 4.1 ARXML, client/
server with Simulink Functions, multi-instance components,
and IFL/IFX libraries . 7-8

AUTOSAR client and server modeling 7-9

xviii Contents

Global From and Goto blocks for AUTOSAR modeling 7-9
AUTOSAR IRV branch from outport signal allowed outside

runnable . 7-9

Data, Function, and File Definition 7-12

Constant sample time limitation for AUTOSAR models 7-12
Iteration variable in For Iterator block uses signal name . . . 7-12
Data type replacement specification can be used across

models . 7-12
Definition file for grouped custom storage classes 7-12
Type definition location for custom storage classes 7-13
GetFunction and SetFunction included in checks for identifier

clash . 7-13

Code Generation . 7-14

Enhanced reporting of eliminated blocks 7-14
Improved MISRA-C type cast compliance 7-14
Support Package for AUTOSAR Standard 7-14
AUTOSAR help navigation enhancements 7-15
Support for AUTOSAR Release 4.1 7-16

AUTOSAR 4.1 ARXML and C code generation 7-16
AUTOSAR 4.1 InitEvent support 7-16
AUTOSAR 4.1 provide-require port support 7-17

Multi-instance AUTOSAR atomic software components 7-17
AUTOSAR arxml import and export 7-17

AUTOSAR R4.x compliant data type support 7-17
AUTOSAR CompuMethod control 7-19
Improved AUTOSAR package configuration 7-21
AUTOSAR calibration component export 7-21
Simulink Min and Max mapping to AUTOSAR physical

data constraints . 7-22
AUTOSAR addPackageableElement replaces add*Interface

functions . 7-22
Code generation report with enhanced navigation and

integrated access to code metrics data 7-23
Updated license requirements for viewing code generation

report . 7-23
Option for doxygen style comments in generated code 7-24
Dynamic memory allocation parameters renamed 7-25
Template makefile compatibility with execution time

profiling . 7-25

xix

Intel Performance Primitives (IPP) platform-specific code
replacement libraries for cross-platform code generation . 7-25

Deployment . 7-27

Embedded Coder support packages for AUTOSAR, TI Concerto,
and Freescale FRDM-KL25Z . 7-27

Relational operator replacement . 7-27
Code replacement involving vector and matrix data 7-27

Trigonometry function replacement 7-27
Replacement of shift and cast operations involving vector

and matrix operands . 7-28
Algorithm specification for addition and subtraction operator

replacement . 7-28
Improved code replacement with output type cast absorption 7-29
Lookup table function code replacement extended to 30

dimensions . 7-29
Rounding mode support for lookup table function

replacement . 7-30
Algorithm parameter value sets in code replacement table

entries . 7-30
coder.replace support for functions specified with varargin

input variable . 7-30
Documentation installation with hardware support package 7-31
Support package for Altera SoC platform 7-31
Support package for BeagleBone Black hardware 7-31
Support for Eclipse IDE has been removed 7-31
Support for Green Hills MULTI IDE has been removed 7-32
Support for Texas Instruments C5000 DSPs will be removed 7-32

Performance . 7-33

Reduced RAM and faster execution for modeling patterns
including select-assign-iterate blocks, subsystem interfaces,
and model references . 7-33

Example Model . 7-33
In-place assignments for select-assign-iterate pattern . 7-35
Subsystem signal information 7-36
Variable reuse around call site 7-37

Global variable localization optimizations 7-38

Verification . 7-40

Top-model code testing with Model block SIL and PIL 7-40

xx Contents

SIL/PIL support for Simulink Function and Function Caller
blocks . 7-40

SIL debugging support for Linux . 7-41
PIL support for test hardware approach 7-41
SIL/PIL support for model initialization dynamic memory

allocation . 7-41

Check bug reports for issues and fixes 7-42

R2014a

Code Generation from MATLAB Code 8-2

Template to customize code generation output for MATLAB
Coder . 8-2

In-place function replacement with coder.replace in
MATLAB . 8-2

Single-line (//) comment style available for generated code . . . 8-2
Software-in-the-loop verification for MATLAB Coder 8-3
Change of default value for MATLABFcnDesc 8-4

Model Architecture and Design . 8-6

Capability to merge AUTOSAR authoring tool changes into
Simulink models as part of round-trip iterations 8-6

AUTOSAR 4.0 static and constant memory, AUTOSAR-typed
per-instance memory, and VariationPointProxy 8-8

Static and constant memory . 8-8
AUTOSAR-typed per-instance memory 8-8
Variation point proxy . 8-8

Specify AUTOSAR runnable symbol name distinct from short-
name . 8-9

Improved AUTOSAR arxml support for measurement and
calibration . 8-9

AUTOSAR data dictionary support 8-10
Configure AUTOSAR Interface button removed from

AUTOSAR Code Generation Options 8-10
Subsystem methods of AUTOSAR arxml.importer class

removed . 8-11

xxi

Data, Function, and File Definition 8-12

Custom storage class and optimized class declarations for C++
class code generation . 8-12

Custom storage class support for C++ class code
generation . 8-12

Improved code for C++ model class declarations 8-12
Constant sample time limitations for root-level Outport

blocks . 8-12
Example model rtwdemo_cppencap renamed to
rtwdemo_cppclass . 8-13

Unit Delay block optimization . 8-13

Code Generation . 8-14

In-place function replacement with coder.replace in MATLAB
and lookup table code replacement for Simulink 8-14

In-place function replacement with coder.replace in
MATLAB . 8-14

Lookup table code replacement for Simulink 8-14
Global variable usage available in the static code metrics

report . 8-14
Single-line (//) comment style available for generated code . . 8-15
Code indentation support for namespace declarations in

generated code . 8-15
AUTOSAR C code generation enhancements 8-16
Static main program module for C++ class code generation . 8-17
Error message for data type replacement and classic call

interface conflict . 8-17

Deployment . 8-18

ARM Cortex-A optimized code generation using Ne10 library 8-18
Lookup table code replacement for Simulink 8-18
Replacement of functions that take vector and matrix

arguments . 8-19
Logical data type support for arguments of replaced

functions . 8-19
Code replacement data alignment for complex types 8-19
Intel IPP (ANSI) and Intel IPP (ISO) code replacement libraries

are combined . 8-20
Support for Eclipse IDE will be removed 8-20
Support for Green Hills MULTI IDE will be removed 8-21
Support package for ARM Cortex-A processors 8-21

xxii Contents

Support package for Texas Instruments C6000 processors . . 8-21
Updates to support package for Texas Instruments C2000

processors . 8-22
Updates to support package for Xilinx Zynq-7000 platform . 8-22
Updates to support package for STMicroelectronics STM32F4

Discovery board . 8-23
Wind River Tornado (VxWorks 5.x) example main program

option to be removed in future release 8-23

Performance . 8-25

Additional options for reuse of global variables 8-25
Enhanced global variable optimization options 8-25
for loops used to initialize arrays to zero 8-25

Verification . 8-27

Software-in-the-loop simulation for physical models 8-27
SIL verification for subsystem code generation 8-27
SIL and PIL support for fixed-point data type override 8-30
SIL and PIL support for Invoke AUTOSAR Server Operation

block . 8-30
SIL and PIL support for structure parameters with storage

class SimulinkGlobal . 8-30
Model block SIL and PIL with export-function and

asynchronous function-call models 8-30
Model block SIL and PIL with disabled inline parameters . . 8-31
SIL and PIL block improvements . 8-32

Check bug reports for issues and fixes 8-33

R2013b

Code Generation from MATLAB Code 9-2

Software-in-the-loop verification for MATLAB Coder 9-2
Custom generated identifiers for emxArray utility functions . 9-2

Model Architecture and Design . 9-4

xxiii

Enhanced modeling of AUTOSAR runnables and modes, and
improved ARXML import of internal behavior 9-4

Enhanced modeling and simulation of AUTOSAR multiple
runnables . 9-4

Enhanced ARXML import of AUTOSAR software
component internal behavior 9-4

Ability to model AUTOSAR mode receiver ports and
events . 9-5

AUTOSAR dual-scaled parameter 9-5
Programmatic interface for configuring AUTOSAR

properties and Simulink-AUTOSAR mapping 9-5
Reorganization of Model Advisor Embedded Coder checks . . . 9-6
Model Advisor fixed-point checks with additional coverage and

optimization awareness . 9-7
Protected model Web view . 9-7
RTW.AutosarInterface class to be removed in a future

release . 9-7
Subsystem methods of arxml.importer class to be removed in a

future release . 9-8

Data, Function, and File Definition . 9-9

Simplified global types file rtwtypes.h with invariant
content . 9-9

C++ encapsulation support for name space control and
template-based file customization 9-9

Name space control for scoping C++ encapsulated model
classes . 9-9

Template-based customization of encapsulated C++ header
and source files . 9-10

Shared utility naming control . 9-10
Expanded support for identifier names 9-11
Terminate function setting honored for subsystems and

referenced models . 9-11

Code Generation . 9-12

Support for AUTOSAR release 4.0.3 XML and generated
code . 9-12

Indent style and size control for code generation 9-12
Subsystem functions return value in generated code 9-12
Model reference step function void input and output

arguments . 9-13

xxiv Contents

Deployment . 9-14

ARM Cortex-M optimized code with STM32F4-Discovery board
example . 9-14

Support package for ARM Cortex processors 9-14
Support package for STMicroelectronics STM32F4-

Discovery Board . 9-14
Wind River VxWorks 6.9 support . 9-15

Compatibility Considerations 9-15
Support package for Texas Instruments C2000 processors . . 9-16

Compatibility Considerations 9-16
Coder Target pane in Configuration Parameters dialog box . 9-17
ZedBoard hardware support . 9-18
Simplified multi-instance code interface and dynamic memory

allocation for ERT targets . 9-18
Addition and Subtraction Operator Code Replacement Assumes

Cast-Before-Operation Behavior 9-20

Performance . 9-22

Reusable custom storage class to reduce root I/O memory . . 9-22
Subsystem functions reused independently of output

connection . 9-22

Verification . 9-23

SIL and PIL support fixed-point data types wider than 32
bits . 9-23

SIL and PIL protected model support 9-24
Code execution profiling improvements 9-24

Standalone code generation with function profiling . . . 9-24
Display of code section invocations 9-24
SampleOffset and SamplePeriod removed 9-25

Check bug reports for issues and fixes 9-26

R2013a

Code Generation from MATLAB Code 10-2

xxv

Improved code replacement traceability for MATLAB code
generation . 10-2

Static code metrics report for MATLAB Coder 10-2

Model Architecture and Design . 10-4

AUTOSAR user interface and round trip ARXML file import
and export improvements . 10-4

Improved graphical user interfaces for AUTOSAR
configuration . 10-4

Round-trip preservation of AUTOSAR elements and
UUIDs . 10-6

Code generation for variable-size scalar signals 10-7

Data, Function, and File Definition 10-8

Shortened system-generated identifier names 10-8
Improved data initialization with custom storage classes . . . 10-8
Default specification for global types 10-8
Subsystem block parameter Function packaging option

renamed . 10-8

Code Generation . 10-9

Model Advisor checks for code generation 10-9

Deployment . 10-10

Concurrent execution API to target embedded multicore
platforms . 10-10

Semaphore and mutex code replacement for multicore
target environments . 10-10

Hardware timer function replacement 10-10
Hardware configuration relocation from Target Preferences

block to Configuration Parameters dialog box 10-11
Downloadable support and blocks for Analog Devices DSPs 10-12
Texas Instruments C2000 Clocking Options 10-12
Support for Texas Instruments C2802x and Texas Instruments

C2803x variants . 10-13
Downloadable support and blocks for Xilinx Zynq-7000

platform . 10-14
Support ending for Eclipse IDE in a future release 10-14
Support ending for remoteBuild method in a future release 10-15

xxvi Contents

Performance . 10-16

Optimized function arguments for nonreusable subsystems 10-16
Reduced data copies for tunable parameter expressions . . . 10-16
Removal of unused global variables 10-17

Verification . 10-18

Debugging during SIL simulations 10-18
Simulation of multiple SIL Model blocks in a top model . . . 10-18
API for testing rtiostream communications 10-18
SIL and PIL support for targets with multicore processors . 10-19
Additional code annotation for justifying Polyspace checks 10-20
Code execution profiling improvements 10-20

Comprehensive measurement and reporting of function
execution times . 10-20

Viewing and comparing execution time plots with the
Simulation Data Inspector 10-20

Specification of hardware timer through the Code
Replacement Tool . 10-21

Code-to-model traceability links for reusable subsystems in
libraries . 10-21

Check bug reports for issues and fixes 10-23

R2012b

Cyclomatic complexity measurement in static code metrics
report . 11-2

Custom code substitution for MATLAB functions using code
replacement libraries . 11-2

SIL and PIL support for signal logging, encapsulated C++,
and AUTOSAR calibration parameters 11-2

Signal logging for SIL and PIL simulations 11-3
Use SIL and PIL simulations to verify encapsulated C++

code . 11-3
Improved SIL and PIL verification for AUTOSAR-compliant

code . 11-3

xxvii

AUTOSAR 4.0 nonscalar data support 11-4

Code annotation for justifying Polyspace checks 11-4

Texas Instruments Code Composer Studio IDE 5.1
support . 11-4

External mode support for ERT targets with static main . . 11-5

Downloadable support for Green Hills MULTI 11-5

Support for Texas Instruments C2806x processors 11-6

Performance enhancement of Simulink data objects 11-7

AUTOSAR software component import and export
enhancements . 11-8

Import validation . 11-8
Faster import and export of arxml files 11-8
Explicit access mode for AUTOSAR Sender and Receiver

ports . 11-9
Import port-based calibration parameters 11-9

Highlight virtual blocks in model Web view of code
generation report . 11-9

Code Execution Profiling Improvements 11-9
Updated Code Execution Profiling API 11-9
Code Execution Profiling Supports Single Object Output . . 11-12

Incremental Compilation with Changes in Code Coverage
Settings . 11-13

Check bug reports for issues and fixes 11-14

R2012a

AUTOSAR Enhancements . 12-2
AUTOSAR Release 4.0 . 12-2

xxviii Contents

Support for Schema 2.0 Removed . 12-2

Code Efficiency Enhancements . 12-2
For Each Subsystem Loop Bound Passed by Value 12-2
Fully Inlined S-functions from Legacy Code Tool 12-3
Element-Wise Operations as Inputs to Intrinsic Functions . 12-3

Enhancements to Custom Storage Classes in Simulink and
mpt Packages . 12-4

Code Generation Report Includes Simulink Web View 12-4

LDRA Testbed Code Coverage Annotations in Code
Generation Report . 12-5

Generated Identifiers Enhancements 12-5
Simplified Identifiers for Model Reference Code 12-5
Consistent Identifiers for Comparing Generated Code 12-5

Code Replacement Enhancements . 12-6
Target Function Libraries Renamed to Code Replacement

Libraries . 12-6
Enhanced Code Replacement Traceability 12-7
Code Replacement Support for Simulink Matrix Division and

Inversion Operators . 12-8
Code Replacement Support for MATLAB Coder fix, hypot,

round, and sign Functions . 12-8
Integer Functions Now Return Real-World Values 12-8

SIL and PIL Enhancements . 12-8
SIL and PIL Test Harness Files in Code Generation Report . 12-9
PIL Support for Code Coverage with LDRA Testbed 12-10
Seamless Switching Between SIL and PIL for Top-Model and

Model Block . 12-10
Enhanced Hardware Implementation Support 12-10
Top-Model Output Limitations Removed 12-11
Model Block SIL/PIL Support for Absolute Time 12-12

Changes for ERT and ERT-Based Targets 12-12

Changes for Embedded IDEs and Embedded Targets 12-13
Support Added for GCC 4.4 on Host Computers Running Linux

with Eclipse IDE . 12-13

xxix

Support Added for Using Processor-in-the-Loop (PIL) with
Serial Communication Interface (SCI) for TI C2000
Processors . 12-13

Support Removed for Freescale MPC5xx 12-14
Limitation: Parallel Builds Not Supported for Embedded

Targets . 12-14

New and Enhanced Demos . 12-14

Check bug reports for issues and fixes 12-16

R2011b

Static Code Metrics in Code Generation Report 13-2

AUTOSAR Enhancements . 13-2
Import and Export of AUTOSAR Sensor/Actuator

Components . 13-2
Improved Simulink Library Support for Multiple

Runnables . 13-2
AUTOSAR Schema Version 3.2 . 13-3
Export AUTOSAR XML as Single File 13-3

SIL and PIL Enhancements . 13-3
Code Execution Profiling of Functions in Subsystems and Model

Blocks . 13-3
Code Coverage with LDRA Testbed 13-3
BitField and GetSet Custom Storage Classes 13-3
Model Blocks with Variable-Size Signals 13-4
Verification of Generated C++ Code 13-4

Generate Multitasking Code for Concurrent Execution on
Multicore Processors . 13-4

Changes for Embedded IDEs and Embedded Targets 13-5
64-bit Version of Embedded Coder Supports Analog Devices

VisualDSP++ and Texas Instruments Code Composer Studio
3.3 and 4.0 . 13-5

Support Added for Wind River VxWorks 6.8 13-6

xxx Contents

Support Added for Serial Communications Interface with
Processor-in-the-loop (PIL) for Texas Instruments™ C28035
and C28335 . 13-6

New Target Function Library for Intel IPP/SSE (GNU) 13-6
Support Added for Single Instruction Multiple Data (SIMD)

with ARM Cortex-A8, ARM Cortex-A9 , and Intel
Processors . 13-6

Support Removed for Altium TASKING 13-7
Support Removed for Infineon C166 13-7
Support Ending for Green Hills MULTI in a Future

Release . 13-7
Support Ending for Freescale MPC5xx in a Future Release . 13-7

Saturation Control of Stateflow Data 13-7

Custom Storage Class Properties for Managing Data
Ownership and Definition . 13-8

Export Data Declarations to Shared Header File for Code
Generation with Model Reference 13-9

Target Function Library Code Replacement
Enhancements . 13-9

Code Replacement Tool for Creating and Managing TFL
Tables . 13-9

Ability to Align Data Objects to TFL-Specified Boundaries to
Boost Code Performance . 13-10

Support for Replacing Element-wise Matrix Multiply 13-11

Code Generation Enhancements . 13-11
Redundant Condition Checks . 13-11
Loop Fusion . 13-12
Invariant Condition Check Lifting 13-12
Parameter Pooling for Stateflow and Interpreted MATLAB

Function Blocks . 13-12
Readability Improvement for Reusable Subsystem Input and

Output . 13-12

Enhanced Code Generation Optimization Using Minimum
and Maximum Values . 13-12

New Model Advisor Check for Code Efficiency of Logic
Blocks . 13-13

xxxi

Control of Default Case Generation for Switch Statements in
Generated Code for Stateflow Charts 13-13

Improvement to Build Process for Conflicting Identifiers 13-14

Update to Code Generation Verification Class cgv.Config 13-15

License Names Not Yet Updated for Coder Product
Restructuring . 13-15

New and Enhanced Demos . 13-15

Check bug reports for issues and fixes 13-17

R2011a

Coder Product Restructuring . 14-2
Product Restructuring Overview . 14-2
Resources for Upgrading from Real-Time Workshop Embedded

Coder . 14-3
Migration of Embedded MATLAB Coder Features to MATLAB

Coder . 14-4
Migration of Embedded IDE Link and Target Support Package

Features to Simulink Coder and Embedded Coder 14-4
Interface Changes Related to Product Restructuring 14-5
Simulink Graphical User Interface Changes 14-5

Data Management Enhancements and Changes 14-6
Memory Section Enhancements . 14-6
No Longer Able to Set RTWInfo or CustomAttributes Property

of Simulink Data Objects . 14-6
Parts of Data Class Infrastructure Not Available 14-7
No Longer Generating Pragma for Data Defined with

Built-In Storage Class ExportedGlobal, ImportedExtern, or
ImportedExternPointer . 14-8

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release 14-9

xxxii Contents

AUTOSAR Enhancements . 14-9
Calibration Parameters . 14-9
Multiple Runnables from Virtual Subsystems 14-9
Support for Code Descriptor Elements 14-10

SIL and PIL Enhancements . 14-11
Code Execution Profiling . 14-11
PIL Block Parameter Tuning . 14-11
Top-Model SIL/PIL and PIL Block Parameter Initialization 14-11
Model Block Parameter Tuning and Model Initialization . . 14-11

Code Generation Enhancements . 14-12
Improved Code for Data Store Memory In-place

Assignment . 14-12
Improvements to Target Function Library Replacements . . 14-12
Improved Loop Fusion . 14-12
Improved Array Indexing . 14-12
Improvement on Matrix Parameter Pooling 14-13
Readability Improvements Involving Data References 14-13

Code Generation Verification (CGV) API Updates 14-13
Support for Adding Multiple Callback Functions 14-13
New Functionality Added to the cgv.CGV Class 14-13

MISRA-C Code Generation Objective 14-16

New Model Advisor Check for Code Efficiency of Lookup
Table Blocks . 14-17

Enhanced Code Generation Optimization 14-17

Target Function Library Replacement Based on Computation
Method for Reciprocal Sqrt, Sine, and Cosine 14-18

Target Function Library Support for abs, min, max, and sign
functions . 14-18

C++ Encapsulation Allowed for Referenced Models in For
Each Subsystems . 14-18

Improved Code Generation for Portable Word Sizes 14-19

Improved Comments in the Generated Code 14-19

xxxiii

Replacement Data Types and Simulation Mode for
Referenced Models . 14-19

Changes for Embedded IDEs and Embedded Targets 14-19
Feature Support for Embedded IDEs and Embedded

Targets . 14-20
Execution Profiling during PIL Simulation 14-21
Location of Blocks for Embedded Targets 14-21
Location of Demos for Embedded IDEs and Embedded

Targets . 14-22
Multicore Deployment with Rate-Based Multithreading . . 14-23
Windows-Based Code Generation and Remote Build On Linux

Target (BeagleBoard) . 14-24
Changes to Frame-Based Processing 14-24
New Support for Analog Devices Blackfin BF50x and BF51x

Processors . 14-25
Generate Optimized Fixed-Point Code for ARM Cortex-M3,

Cortex-A8, and Cortex-A9 Processors 14-26
Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI 14-26
Support for Texas Instruments Delfino C2834x Processors 14-26
Ending Support for Altium TASKING in a Future Release 14-27
Ending Support for Freescale MPC5xx in a Future Release 14-27
Ending Support for Infineon C166 in a Future Release . . . 14-27
Removed Methods and Arguments 14-27

Changes to ver Function Product Arguments 14-27

New and Enhanced Demos . 14-28

Check bug reports for issues and fixes 14-29

xxxiv Contents

R2017a
Version: 6.12

New Features

Bug Fixes

Compatibility Considerations

R2017a

Code Generation from MATLAB Code

SIL and PIL execution improvements for MATLAB Coder

This table lists software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution
improvements.

Feature R2017a Previous releases

Interface type: Global data Supported Not supported
Size: Dynamic variable-size
arrays

Supported Not supported

For more information, see “SIL/PIL Execution Support and Limitations”.

Verification of PIL target connectivity configuration

The piltest function provides additional tests for verifying your custom processor-
in-the-loop (PIL) target connectivity configuration. You can specify tests by using the
'Testpoint' argument.

'Testpoint' Value Description

'verifyPILConfig' For a given set of input values, the function:

• Runs a MATLAB® function on your development
computer.

• Performs PIL executions of generated MATLAB code
on your target hardware with config.TargetLang
settings 'C' and 'C++'.

The function compares results from the MATLAB function
run and the PIL executions. If the function detects
differences, it produces an error.

For more information, see “Create PIL Target Connectivity Configuration”.

1-2

 Code Generation from MATLAB Code

Code Replacement for MATLAB Coder: Create code replacement library
entries for target implementations that require data alignment

As of R2017a, you can take advantage of function implementations that require aligned
data to optimize application performance when using MATLAB Coder™.

For more information, see “Data Alignment for Code Replacement”.

1-3

R2017a

Model Architecture and Design

AUTOSAR arxml File Import: Flexibly model imported periodic,
asynchronous, and initialization runnables

The AUTOSAR arxml importer now supports AUTOSAR modeling styles for which
Simulink® modeling support was added in R2016b. For example, you can

• Import periodic and asynchronous runnables in a JMAAB type beta modeling
configuration. The modeling style is described in “Add Top-Level Asynchronous
Trigger to Periodic Rate-Based System”.

• Import an initialize runnable, which the importer now represents with a Simulink
Initialize Function block.

To import an AUTOSAR software component with multiple runnable entities into a
Simulink model, you use the arxml importer method createComponentAsModel.
As part of improved runnable modeling, the createComponentAsModel method now
provides the property ModelPeriodicRunnablesAs, which replaces the property
CreateInternalBehavior. At model creation time, set ModelPeriodicRunnablesAs
to one of these values:

• AtomicSubsystem (default) — Import AUTOSAR periodic runnables found in arxml
files. Model periodic runnables as atomic subsystems with periodic rates in a rate-
based model. If conditions prevent use of atomic subsystems, the importer throws an
error.

• FunctionCallSubsystem — Model periodic runnables as function-call subsystems
with periodic rates.

• Auto — Attempt to model periodic runnables as atomic subsystems. If conditions
prevent use of atomic subsystems, model periodic runnables as function-call
subsystems.

Set ModelPeriodicRunnablesAs to AtomicSubsystem unless your design requires
use of function-call subsystems. The following call directs the importer to import a
multirunnable AUTOSAR software component and map it into a new rate-based model.

obj = arxml.importer('mySWC.arxml')

createComponentAsModel(obj,'/pkg/swc/ASWC','ModelPeriodicRunnablesAs','AtomicSubsystem')

For more information, see “Import AUTOSAR Software Component” and “Model
AUTOSAR Software Components”.

1-4

 Model Architecture and Design

AUTOSAR DESC elements populate Simulink Description fields

Importing AUTOSAR DESC information associated with an AUTOSAR identifiable
element now populates the Description property in the corresponding Simulink
element or data object. Correspondingly, exporting a Simulink element or data object
Description property now populates the DESC information in the corresponding
AUTOSAR element. Previously, Embedded Coder® preserved AUTOSAR DESC
information across arxml round-trips but did not leverage the information to add a
readable text description to the Simulink model.

For example, suppose that you open the example model
rtwdemo_autosar_swc_slfcns and add a description to the Simulink Function block
read_data. Use the block properties dialog.

When you export arxml for the model, the generated runnable description contains the
Simulink description text.

<RUNNABLE-ENTITY UUID="...">

 <SHORT-NAME>Runnable_readData</SHORT-NAME>

 <DESC>

 <L-2 L="FOR-ALL">Read data function for ASWC</L-2>

 </DESC>

...

 <SYMBOL>readData</SYMBOL>

</RUNNABLE-ENTITY>

1-5

R2017a

Note: This support is available to R2015b, R2016a, and R2016b Embedded Coder
customers by installing the latest AUTOSAR support package for your release:

• R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.8 or
later

• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.5 or
later

• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.2 or
later

External mode code generation for a model containing inline variant
blocks

In R2017a, for a model containing Variant Source or Variant Sink blocks, you can
generate code for the external mode data interface. In the block parameters dialog box,
clear the Analyze all choices during update diagram and generate preprocessor
conditionals parameter. For more information on external mode, see “Set Up and Use
Host/Target Communication Channel”.

Code generation support for Variant Subsystems containing global
signals

In R2017a, you can generate code for a model containing a Variant Subsystem with
global signals inside it. You declare signals as global by assigning them a storage class
other than Auto. See “Storage Classes for Signals Used with Model Blocks”.

Preprocessor conditionals guard content inside and outside of function-
call site

In R2016b, for a model that contained a conditional function-call subsystem, preprocessor
conditionals guarded only the content inside the function. In R2017a, preprocessor
conditionals guard the content and the function-call site.

For example, in the model func_call_guards, a Variant Source block connects to the
function-call subsystem Proc_Ini.

1-6

 Model Architecture and Design

In R2016b, the code generator produced this code:

/* Model step function */

void TestModel_Proc_Ini(void)

{

 /* RootInportFunctionCallGenerator: '<Root>

 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */

#if W == 1

 /* Outputs for Function Call SubSystem: '<Root>/Proc_Ini' */

 /* SignalConversion: '<S1>/OutportBufferForOut1' */

 Out1 = 1.0F;

 /* SignalConversion: '<S1>/OutportBufferForOut2' */

 Out2 = 1.0F;

 /* End of Outputs for SubSystem: '<Root>/Proc_Ini' */

#endif /* W == 1 */

 /* End of Outputs for RootInportFunctionCallGenerator: '<Root>

 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */

}

The preprocessor conditionals guarded the content inside the function Proc_Ini.

In R2017a, the code generator produces this code:

/* Model step function */

#if W == 1

1-7

R2017a

void TestModel_Proc_Ini(void)

{

 /* RootInportFunctionCallGenerator: '<Root>

 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */

#if W == 1

 /* Outputs for Function Call SubSystem: '<Root>/Proc_Ini' */

 /* SignalConversion: '<S2>/OutportBufferForOut1' */

 Out1 = 1.0F;

 /* SignalConversion: '<S2>/OutportBufferForOut2' */

 Out2 = 1.0F;

 /* End of Outputs for SubSystem: '<Root>/Proc_Ini' */

#endif /* W == 1 */

 /* End of Outputs for RootInportFunctionCallGenerator: '<Root>

 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */

}

#endif /* W == 1 */

The preprocessor conditionals guard the content inside and outside of the function
Proc_Ini.

1-8

 Data, Function, and File Definition

Data, Function, and File Definition

Function Interface: Return nonvoid type for scalar output of reusable
functions

In R2016b, reusable functions had a return type of void. In R2017a, reusable functions
can return a nonvoid type. The code generator can return a nonvoid type if the reusable
function has one output parameter that is a scalar and in the Configuration Parameters
dialog box, on the Optimization > Signals and Parameters pane, the Pass reusable
subsystem outputs as parameter is set to Individual arguments.

Returning a nonvoid type conserves RAM consumption because the generated code does
not contain a global variable to hold the output parameter value. There are also minor
improvements in ROM consumption because the function call site and the function body
are smaller.

For example, the model reusable_sub contains four reusable subsystems. Subsystem2
contains Subsystem3. Subsystem1, Subsystem3, and Subsystem4 contain the blocks
shown in this diagram following the model. The subsystem output is a scalar.

1-9

R2017a

1-10

 Data, Function, and File Definition

In R2016b, the reusable subsystem function contained this code:

void reusable_sub_Subsystem1(uint32_T rtu_In1, uint32_T rtu_In2, uint32_T

 rtu_In3, uint32_T rtu_In4, uint32_T *rty_Out1)

{

 uint32_T rtb_Add;

 rtb_Add = rtu_In1 + rtu_In2;

 if (rtb_Add > rtu_In4) {

 *rty_Out1 = rtu_In4;

 } else if (rtb_Add < rtu_In3) {

 *rty_Out1 = rtu_In3;

 } else {

 *rty_Out1 = rtb_Add;

 }

}

void reusable_sub_step(RT_MODEL_reusable_sub *const reusable_sub_M,

 ExternalInputs_reusable_sub *reusable_sub_U, ExternalOutputs_reusable_sub

 *reusable_sub_Y)

{

 reusable_sub_Subsystem1(reusable_sub_U->first_data1,

 reusable_sub_U->second_data1, reusable_sub_U->range_min1,

 reusable_sub_U->range_max1, &reusable_sub_Y->Out1);

 reusable_sub_Subsystem1(reusable_sub_U->first_data2,

 reusable_sub_U->second_data2, reusable_sub_U->range_min2,

 reusable_sub_U->range_max2, &reusable_sub_Y->Out2);

1-11

R2017a

 reusable_sub_Subsystem1(reusable_sub_U->first_data3,

 reusable_sub_U->second_data3, reusable_sub_U->range_min3,

 reusable_sub_U->range_max3, &reusable_sub_Y->Out3);

 UNUSED_PARAMETER(reusable_sub_M);

}

In R2016b, the generated code contained the global variable rty_Out1 to hold the
output. rty_Out1 was passed to reusable_sub_Subsystem1.

In R2017a, the reusable_sub.c file contains this code:

uint32_T reusable_sub_Subsystem1(uint32_T rtu_In1, uint32_T rtu_In2, uint32_T

 rtu_In3, uint32_T rtu_In4)

{

 uint32_T rty_Out1_0;

 rty_Out1_0 = rtu_In1 + rtu_In2;

 if (rty_Out1_0 > rtu_In4) {

 rty_Out1_0 = rtu_In4;

 } else {

 if (rty_Out1_0 < rtu_In3) {

 rty_Out1_0 = rtu_In3;

 }

 }

 return rty_Out1_0;

}

void reusable_sub_step(RT_MODEL_reusable_sub *const reusable_sub_M,

 ExternalInputs_reusable_sub *reusable_sub_U, ExternalOutputs_reusable_sub

 *reusable_sub_Y)

{

 reusable_sub_Y->Out1 = (uint32_T) reusable_sub_Subsystem1

 (reusable_sub_U->first_data1, reusable_sub_U->second_data1,

 reusable_sub_U->range_min1, reusable_sub_U->range_max1);

 reusable_sub_Y->Out2 = (uint32_T) reusable_sub_Subsystem1

 (reusable_sub_U->first_data2, reusable_sub_U->second_data2,

 reusable_sub_U->range_min2, reusable_sub_U->range_max2);

 reusable_sub_Y->Out3 = (uint32_T) reusable_sub_Subsystem1

 (reusable_sub_U->first_data3, reusable_sub_U->second_data3,

 reusable_sub_U->range_min3, reusable_sub_U->range_max3);

 UNUSED_PARAMETER(reusable_sub_M);

}

The generated code does not contain a global variable to hold output. Instead, the
function returns the local variable rty_Out1_0.

1-12

 Data, Function, and File Definition

Utility to generate Simulink representations of struct and enum types
defined by external C code

Before R2017a, to generate code that used struct and enum types defined by your
external code, you had to manually create the corresponding definitions in Simulink (for
example, Simulink.Bus objects).

In R2017a, you can generate these corresponding Simulink definitions by using a
programmatic utility. The utility parses your external C code for struct and enum type
definitions. For more information, see “Utility to generate Simulink representations of
custom data types defined by external C code” (Simulink).

1-13

R2017a

Code Generation

Cross-Release Code Integration: Reuse model reference code generated
from previous releases

In R2017a, you can integrate exported component code that uses the model reference
code interface. Previously, the cross-release integration workflow supported only
component code that used the standalone code interface. For more information, see
“Cross-Release Code Integration”.

Compatibility Considerations

For the crossReleaseImport function, the value for the CodeLocation argument
specifies the path to an anchor folder that contains the relocated model code folder.
Previously, the CodeLocation value specified the path to the relocated model code
folder.

For R2017a, if you relocate generated model code, use an anchor folder and maintain the
original code folder names and structure.

Model
Component

Code
Interface

Original Code Location New Code Location

Top
model

StandalonecodeGenFolder/modelName_ert_rtw anchorFolder/modelName_ert_rtw

Referenced
model

Model
reference

codeGenFolder/slprj/

ert/refModelName

anchorFolder/slprj/

ert/refModelName

SubsystemStandalonecodeGenFolder/subSysName_ert_rtw anchorFolder/subSysName_ert_rtw

Code Replacement for Cast and Multiply Operations: Detect overflow and
rounding mode equivalence for increased matches and code efficiency

As of R2017a, the code replacement software support for detecting overflow and rounding
mode equivalence is enhanced for cast operations and multiply operations:

• Cast operations — When an operation does not overflow, based on input and output
data types, a match occurs for code replacement table entries with the saturation
mode set to Wrap on Overflow (RTW_WRAP_ON_OVERFLOW). Similarly, if the code
replacement software detects equivalent rounding modes, a match occurs.

1-14

 Code Generation

• Multiplication operations — The detection of overflow and rounding modes
equivalence is enhanced to support a mixture of fixed-point and floating-point types.

For more information, see “Develop a Code Replacement Library”.

More information in code generation report summary

Additional fields in the code generation report Summary page provide information on
your model and the generated code, including:

• Author
• Last Modified By
• Tasking Mode (except for exported models)
• System Target File
• Hardware Device Type
• Type of Build
• Memory Information (if you select parameter Code Generation > Report >

Static code metrics)
• Code Generation Advisor (if you run Code Generation Advisor as part of the build

process, it provides link to Code Generation Advisor Report)
• Code Reuse Exception (if exceptions exist, it links to Subsystem Report)

For more information on code generation reports, see “Reports for Code Generation”.

Code Interface Report: Includes entry-point function for code generated
from Reset Function block

Starting in R2017a, the Code Interface Report section of the Code Generation Report
includes entry-point function information for code generated from Reset Function blocks.
For more information, see “Generate Code That Responds to Initialize, Reset, and
Terminate Events” and “Analyze the Generated Code Interface”.

Shared utility memory section associated with subfunctions

Previously, you could not predict which memory section was associated with subfunctions
in the generated code. Simulink Coder generates these subfunctions for intrinsic math

1-15

R2017a

utilities, Stateflow® graphical functions, and MATLAB subfunctions. The possible
associations included:

• The Shared utility memory section that you specify at the model level.
• The Execution memory section that you specify at the model level.
• The Execution memory section that you specify for one of the subsystems.

In R2017a, the memory section associated with these subfunctions is always the Shared
utility memory section that you specify at the model level.

Inline traceability for generated code

Model-to-code and code-to-model navigation are enhanced for Embedded Coder in
R2017a. Inline traceability is now fully supported:

• For MATLAB functions
• For Simulink blocks, with the exception of From Workspace and From File blocks

For more information on bidirectional traceability, see “What Is Code Tracing?”.

Clear file section content from TLC file

The ability to reset a file section buffer in TLC was removed in R2015a. In R2017a, you
can use the TLC function LibClearFileSectionContents to clear a file section buffer so
that you can reset it. This function can be applied to the following sections:

• Banner

• Includes

• ModelTypesTypedefs

• Defines

• ModelTypesDefines

• IntrinsicTypes

• PrimitiveTypedefs

• UserTop

• Typedefs

• Enums

1-16

 Code Generation

• Definitions

• ExternData

• ExternFcns

• FcnPrototypes

• Declarations

• Functions

• CompilerErrors

• CompilerWarnings

• Documentation

• UserBottom

Identifier case control with token decorators and custom text token $U

$U Token for Specifying Text in Generated Identifiers

On the Code Generation > Symbols pane, you can use the $U token to specify text to
include in the generated identifiers. All the identifiers on the Symbols pane accept this
new token.

You set the value of $U by specifying a character vector for the Custom token text
parameter. The Custom token text parameter is on the All Parameters tab in the
Configuration Parameters dialog box.

For more information, see “Identifier Format Control” and “Custom token text”.

Case Control with Token Decorators

On the Code Generation > Symbols pane, you can use new token decorators to control
the case of generated identifiers. For example, use this technique to apply camel case
style.

Place a decorator immediately after a token and enclose the decorator in square brackets
[]. For example, you can set Global variables to $R[uL]$N$M, which capitalizes the
first letter of the model name and forces the remaining characters in the model name to
lowercase.

For more information, see “Control Case with Token Decorators”.

1-17

R2017a

Name change for AUTOSAR local temporary variables

Previously, for an AUTOSAR model, the name for local temporary variables in the
generated code was tmp. In R2017a, the name is tmp plus an identifier associated with
the data access mode of the variable, such as IRead or IWrite. For example, in R2017a,
the name of a local temporary variable with an ImplicitReceive data access mode is
tmpIRead.

Additional checks against MISRA C:2012 guidelines in Code Generation
Advisor

In R2017a, when the Code Generation Advisor checks your model against the MISRA
C:2012 guidelines objective, it executes these additional checks:

• “Check for blocks not recommended for C/C++ production code deployment”
• “Check for unsupported block names”
• “Check usage of Assignment blocks”
• “Check for bitwise operations on signed integers”
• “Check for recursive function calls”
• “Check for equality and inequality operations on floating-point values”
• “Check for switch case expressions without a default case”

Also for the MISRA C:2012 guidelines objective, the Code Generation Advisor considers
these additional parameters:

• “Shared code placement” (Simulink Coder) (UtilityFuncGeneration)
• “System-generated identifiers” (Simulink Coder) (InternalIdentifier)
• “Use dynamic memory allocation for model initialization” (Simulink Coder)

(GenerateAllocFcn)

1-18

 Deployment

Deployment

TI Code Composer Studio (CCS): Generate projects for CCS versions 5 and
6 with Embedded Coder Target for TI C2000

When you build Simulink models for TI C2000 targets with CCS v5 or v6 toolchains, the
Code Composer Studio project is also generated. You can use this project for debugging
the generated code.

Customize generated makefiles for S-Functions

To customize generated makefiles for S-functions, create makecfg.m and
yourSFunction_makecfg.m files that use RTW.BuildInfo functions to specify:

• Additional source files and libraries
• Preprocessor macro definitions
• Compiler flags

For more information, see:

• “Use makecfg to Customize Generated Makefiles for S-Functions”
• “Import Calls to External Code into Generated Code with Legacy Code Tool”

Release notes and workflow overview documentation added to
AUTOSAR support package

R2017a adds release notes and workflow overview documentation to the Embedded
Coder Support Package for AUTOSAR Standard. The release notes describe AUTOSAR
support changes from the current release back through R2014b. Other help topics
provide an overview of AUTOSAR workflows, with links to the main “AUTOSAR” help.

After you install the support package, restart MATLAB, open help (for example, with
the MATLAB doc command), and go to the Hardware Support section. To access
release notes and other help topics, click the link “Embedded Coder Support Package for
AUTOSAR Standard”.

SPI and I2C blocks added to TI C2000 support package

This table lists the support for the new blocks.

1-19

R2017a

Block Usage

SPI Receive Receive data via serial peripheral interface
(SPI) on target.

SPI Transmit Transmit data via serial peripheral
interface (SPI) to host.

I2C Receive Configure inter-integrated circuit (I2C)
module to receive data from I2C bus.

I2C Transmit Configure inter-integrated circuit (I2C)
module to transmit data to I2C bus.

CCS v3.3 IDE automation support for TI C2000 has been removed

The support for TI C2000 with idelink_ert.tlc as system target file has been removed.
You can still use the TI C2000 support by using the ert.tlc as the system target file.

Real-time multitasking profiling for TI C2000

You can use real-time execution profiling to verify whether generated code meets the
real-time performance requirements.

TCP and UDP blocks added to STMicroelectronics STM32F746G-Discovery
board

This table lists the support for these new blocks.

Block Usage

TCP Receive Receive TCP packets from another TCP
host on TCP/IP network

TCP Send Send TCP packets to another TCP host on
TCP/IP network

UDP Receive Receive UDP packets from another UDP
host

UDP Send Send UDP packets to another UDP host

1-20

 Deployment

MATLAB Coder PIL with STMicroelectronics STM32F4-Discovery Board

In R2017a, you can use processor-in-the-loop (PIL) executions to verify generated code
that you deploy to target hardware using a MATLAB Coder workflow with an Embedded
Coder license. By using PIL with hardware, you can generate customized code for your
hardware more effectively by profiling speed and algorithm performance. You have the
option of using the command-line workflow or the MATLAB Coder app to configure your
target hardware for PIL executions.

To use this feature, you must have MATLAB Coder and the support package installed.

This example shows how to use a PIL execution to verify generated code.

1 In the command window, select the hardware for PIL execution.

hw = coder.hardware('STM32F4-Discovery');

2 Add the hardware to the MATLAB Coder configuration object.

cfg = coder.config('lib', 'ecoder', true);

cfg.VerificationMode = 'PIL';

cfg.Hardware = hw;

3 As the stack space in the target hardware is limited, set the maximum stack space
that the generated code uses.

cfg.StackUsageMax = 512;

4 Generate PIL code for a function, computeFFT.

codegen -config cfg computeFFT -args {inp}

Here, computeFFT is a user-defined function. The inp parameter declares the
data type and size for input arguments to MATLAB function computeFFT.
The codegen command generates code into following folders:

• codegen\lib\computeFFT: Standalone code for computeFFT.
• codegen\lib\computeFFT\pil: PIL interface code for computeFFT.

Also, this step creates computeFFT_pil PIL MEX function in the current folder.
This function allows you to test the MATLAB code and the PIL MEX function and
compare the results between both.

5 Run the PIL MEX function to compare its behavior to that of the original MATLAB
function and to check for defects.

1-21

R2017a

u1 = uint16(zeros(1,16));

y = computeFFT_pil(u1);

Terminate PIL execution with the following command.

clear computeFFT_pil;

Using the MATLAB Coder app workflow:

1 Configure the build type and hardware board. On the Generate Code page, in the
Generate dialog box:

• Set the Build Type to Static Library.
• Clear the Generate code only check box.
• Set the Hardware Board to STM32F4-Discovery.

2 You can modify the settings for your board. To modify the settings, click Settings >
All Settings.

Specify the maximum stack space required by the generated code in the Memory
> Stack usage max parameter. The stack space in the target hardware is limited,
and a default value of 20000 is beyond the stack size available in the target
hardware. A value of 512 is recommended. You can specify the stack size based on
the requirement of your application.

3 Click Hardware.
4 To generate the library, click Generate.
5 Set up for PIL execution. Click Verify Code to open the Verify Code dialog box.

Because the hardware board is not MATLAB Host Computer, the Verify Code
dialog box is configured for PIL execution.

In the Verify Code dialog box:

• Enter the name of the test file to use for PIL execution.
• Select Generated code.

6 To start the PIL execution, click Run Generated Code.
7 To stop the PIL execution, click Stop.

For more information, on how to compile your code using the MATLAB Coder app, see
“Opening the MATLAB Coder App” (MATLAB Coder).

1-22

 Deployment

For more information, on how to use the Embedded Coder Support Package for
STMicroelectronics® Discovery Boards for Processor-in-the-Loop (PIL) verification of
MATLAB functions, see “Processor-in-the-Loop Verification of MATLAB Functions”
(Embedded Coder Support Package for STMicroelectronics Discovery Boards).

External Mode and PIL supported over TCP/IP by STMicroelectronics
STM32F746G-Discovery board

The STMicroelectronics STM32F746G-Discovery™ board supports PIL and external
mode over TCP/IP.

Install the Embedded Coder Support Package for STMicroelectronics Discovery Boards to
use this support.

To install or update this support package, perform the steps described in “Install Support
for STMicroelectronics Discovery Boards” (Embedded Coder Support Package for
STMicroelectronics Discovery Boards).

For more information, see “Embedded Coder Support Package for STMicroelectronics
Discovery Boards”.

Linux Support: Connect to ARM Cortex-M processor on Linux platform

You can use the Embedded Coder Support Package for ARM® Cortex®-M Processors
on the Linux host platform to generate and build ARM Cortex-M optimized code from
models.

Note: You cannot load and run code generated from a model on the Linux host platform
using ARM Cortex-M QEMU emulator.

ARM Cortex-R optimized code

Use the Embedded Coder Support Package for ARM Cortex-R Processors to build
optimized executables with automatic code replacement from the Hercules™ Safety MCU
Cortex™-R4 CMSIS DSP Library.

1-23

http://www.ti.com/tool/hercules-dsplib
http://www.ti.com/tool/hercules-dsplib

R2017a

Develop a Target for ARM Cortex-R processors

The Embedded Coder Support Package for ARM Cortex-R Processors supports the
development of user specified Targets. Targets include deployment, scheduling,
processor-in-the-loop, external mode, code replacement, and profiler features.

Support for Wind River VxWorks RTOS will be removed

Embedded Coder support for Wind River VxWorks RTOS will be removed in a future
release. You will still be able to use Embedded Coder for Wind River® VxWorks RTOS,
but will need to manually integrate the generated code with hand written scheduler and
drivers.

1-24

 Performance

Performance

Data Copy Reduction: Generate fewer data copies and use less RAM for
buses, data stores, and model blocks

In R2017a, the generated code contains less temporary variables and associated data
copies for modeling patterns involving Bus Assignment, Data Store Read, Data Store
Write, and Model blocks. These optimizations conserve RAM usage and improve code
execution speed. The following examples highlight these improvements:

• “Data copy reduction for Bus Assignment block” on page 1-25
• “Data copy reduction for Data Store Read and Data Store Write blocks” on page

1-27
• “More efficient code for Model blocks” on page 1-30

Data copy reduction for Bus Assignment block

Previously, for a model that contained a Bus Assignment block, there was an extra
temporary variable and associated data copy in the generated code. In R2017a, the code
generator can remove this data copy. This optimization increases code execution speed
and conserves RAM consumption.

For example, in bus_assignoptim, a bus signal containing six elements feeds into a
Bus Assignment block and a Bus Selector block. The Bus Assignment block assigns new
values to the bus element a1_real_array. This bus signal feeds into Out1.

In R2016b, the code generator produced this code in the bus_assignoptim_step
function:

/* Model step function */

void bus_assignoptim_step(void)

{

 real_T rtb_Assignment[36];

1-25

R2017a

 int32_T i;

 /* Assignment: '<Root>/Assignment' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Product: '<Root>/Product'

 * Selector: '<Root>/Selector'

 * Sum: '<Root>/Sum1'

 */

 for (i = 0; i < 36; i++) {

 rtb_Assignment[i] = bus_assignoptim_U.In1.a1_real_array[i];

 }

 for (i = 0; i < 2; i++) {

 rtb_Assignment[(int32_T)(i + 22)] = (bus_assignoptim_U.In1.a1_real_array

 [(int32_T)(i + 22)] + bus_assignoptim_U.In1.a1_num) *

 bus_assignoptim_U.In2;

 }

 /* End of Assignment: '<Root>/Assignment' */

 /* BusAssignment: '<Root>/Bus Assignment' incorporates:

 * Inport: '<Root>/In1'

 */

 bus_assignoptim_Y.Out = bus_assignoptim_U.In1;

 for (i = 0; i < 36; i++) {

 bus_assignoptim_Y.Out.a1_real_array[i] = rtb_Assignment[i];

 }

 /* End of BusAssignment: '<Root>/Bus Assignment' */

}

The generated code contains the temporary array rtb_Assignment1 for holding data
before this data is assigned to bus_assignoptim_Y.Out2.dbl_real_array.

In R2017a, the bus_assignoptim_step function contains this code:

/* Model step function */

void bus_assignoptim_step(void)

{

 int32_T i;

 /* SignalConversion: '<Root>/TmpBusAssignmentBufferAtBus...

 * Inport: '<Root>/In1'

 */

1-26

 Performance

 bus_assignoptim_Y.Out = bus_assignoptim_U.In1;

 /* Assignment: '<Root>/Assignment' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Product: '<Root>/Product'

 * Selector: '<Root>/Selector'

 * Sum: '<Root>/Sum1'

 */

 for (i = 0; i < 36; i++) {

 bus_assignoptim_Y.Out.a1_real_array[i] =

 bus_assignoptim_U.In1.a1_real_array[i];

 }

 for (i = 0; i < 2; i++) {

 bus_assignoptim_Y.Out.a1_real_array[(int32_T)(i + 22)] =

 (bus_assignoptim_U.In1.a1_real_array[(int32_T)(i + 22)] +

 bus_assignoptim_U.In1.a1_num) * bus_assignoptim_U.In2;

 }

 /* End of Assignment: '<Root>/Assignment' */

}

The generated code does not contain the temporary array rtb_Assignment1
for holding data. The generated code directly assigns the data to
bus_assignoptim_Y.Out2.dbl_real_array.

Note: You can disable this optimization by deselecting the Perform inplace updates
for Bus Assignment blocks parameter. In the Configuration Parameters dialog box,
this parameter is on the All Parameters tab.

Data copy reduction for Data Store Read and Data Store Write blocks

In R2016b, the generated code contained an extra buffer when reading from a Data Store
Read block or when writing to a Data Store Write block. In R2017a, the code generator
can eliminate this extra data copy. This optimization conserves RAM consumption and
improves code execution speed.

For example, in the model rtwdemo_optimizedatastorebuffers, the Function caller
UpdateFunc calls the Simulink Function DefineUpdateFunc. The Data Store Read
block DSR reads from mem. The Data Store Write block DSW writes to mem.

1-27

R2017a

In R2016b, the code generator produced this code:

/* Model step function */

void rtwdemo_optimizedatastorebuffers_step(void)

{

 real_T rtb_DSR_last;

 real_T rtb_Optimize1_o1;

 real_T rtb_Optimize1_o2;

 /* DataStoreRead: '<Root>/DSR' */

 rtb_DSR_last = mem.last;

 /* Switch: '<Root>/Switch' incorporates:

 * Constant: '<Root>/Constant'

 * DataStoreRead: '<Root>/DSR'

 * Inport: '<Root>/Clear'

 */

 if (rtU.Clear) {

 rtb_Optimize1_o1 = 0.0;

 } else {

 rtb_Optimize1_o1 = mem.max;

 }

1-28

 Performance

 /* End of Switch: '<Root>/Switch' */

 /* FunctionCaller: '<Root>/Optimize1' incorporates:

 * Inport: '<Root>/DataNew'

 */

 UpdateFunc(rtb_Optimize1_o1, rtU.DataNew, &rtb_Optimize1_o1, &rtb_Optimize1_o2);

 /* DataStoreWrite: '<Root>/DSW' */

 mem.last = rtb_Optimize1_o1;

 mem.max = rtb_Optimize1_o2;

 /* Outport: '<Root>/Delta' incorporates:

 * Inport: '<Root>/DataNew'

 * Sum: '<Root>/Sum'

 */

 rtY.Delta = rtU.DataNew - rtb_DSR_last;

}

The generated code contained data copies for the Data Store Read and Data Store Write
blocks, respectively.

In R2017a, the code generator produces this code:

/* Model step function */

void rtwdemo_optimizedatastorebuffers_step(void)

{

 real_T rtb_DSR_last;

 real_T tmp;

 /* DataStoreRead: '<Root>/DSR' */

 rtb_DSR_last = mem.last;

 /* Switch: '<Root>/Switch' incorporates:

 * Constant: '<Root>/Constant'

 * DataStoreRead: '<Root>/DSR'

 * Inport: '<Root>/Clear'

 */

 if (rtU.Clear) {

 tmp = 0.0;

 } else {

 tmp = mem.max;

 }

 /* End of Switch: '<Root>/Switch' */

1-29

R2017a

 /* FunctionCaller: '<Root>/Optimize1' incorporates:

 * Inport: '<Root>/DataNew'

 */

 UpdateFunc(tmp, rtU.DataNew, mem.last, mem.max);

 /* Outport: '<Root>/Delta' incorporates:

 * Inport: '<Root>/DataNew'

 * Sum: '<Root>/Sum'

 */

 rtY.Delta = rtU.DataNew - rtb_DSR_last;

}

The data copy for the Data Store Write block is not in the generated code. The
code contains the data copy for the Data Store Read block because the Sum block
executes after the Data Store Write block. The generated code contains the variable
rtb_DSR_last to hold the output of the Sum block. Therefore, the Sum block gets the
values that Optimize1 calculates at the start of the time step rather than those values
at the next time step. If the priority of the Sum block is lower than Optimize1, the code
generator can remove the data copy for the Data Store Read block.

Some other cases in which the code generator might not eliminate data copies are:

• A Simulink Function internally writes to the Data Store Memory block.
• The Data Store Read or Data Store Write blocks select elements of an array from the

Data Store Memory block.
• The Data Store Memory block has a custom storage class.
• The Data Store Read and Data Store Write blocks occur on the same block unless that

block is a Bus Assignment block or an Assignment block.

Note: You can disable this optimization by setting the Reuse buffers for Data
Store Read and Data Store Write blocks parameter to off. In the Configuration
Parameters dialog box, this parameter is on the All Parameters tab.

More efficient code for Model blocks

In R2017a, the generated code contains additional optimizations for modeling patterns
involving Model blocks. These optimizations include turning global variables into
local variables, buffer elimination, data copy reduction, and expression folding. The
optimizations improve ROM and RAM consumption and increase code execution speed.

1-30

 Performance

For example, the model model_ref contains the Model block SimSubE.

In R2016b, the code generator produced this code:

/* Model step function */

void model_ref_step(void)

{

 /* local block i/o variables */

 uint16_T u16_Model;

 uint16_T u16_Out_m;

 uint16_T u16_Out;

 if (model_ref_U.In3 > 30U) {

 u16_Out_m = model_ref_U.In2 + /*MW:OvSatOk*/ 5U;

 if (u16_Out_m < model_ref_U.In2) {

1-31

R2017a

 u16_Out_m = MAX_uint16_T;

 }

 } else {

 u16_Out_m = model_ref_U.In2 + /*MW:OvSatOk*/ 12U;

 if (u16_Out_m < model_ref_U.In2) {

 u16_Out_m = MAX_uint16_T;

 }

 }

 if (model_ref_U.In2 > 20U) {

 u16_Out = model_ref_U.In2 + model_ref_U.In3;

 } else {

 u16_Out = model_ref_U.In2 + /*MW:OvSatOk*/ 2U;

 if (u16_Out < model_ref_U.In2) {

 u16_Out = MAX_uint16_T;

 }

 }

 SimSubE(&model_ref_U.In2, &model_ref_U.In3, &u16_Model);

 switch (model_ref_U.In1) {

 case 0:

 model_ref_Y.Out1 = (model_ref_U.In2 + model_ref_U.In3) * 5U;

 break;

 case 1:

 model_ref_Y.Out1 = u16_Out_m;

 break;

 case 2:

 model_ref_Y.Out1 = u16_Out;

 break;

 default:

 model_ref_Y.Out1 = u16_Model;

 break;

 }

}

In the model_ref_step function, there are three local variables. The if-else
statements are above the switch-case statements, so they are unconditionally
executed.

In R2017a, the code generator produces this code:

/* Model step function */

1-32

 Performance

void model_ref_step(void)

{

 /* local block i/o variables */

 uint16_T u16_Model;

 uint16_T u16_qY;

 SimSubE(&model_ref_U.In2, &model_ref_U.In3, &u16_Model);

 switch (model_ref_U.In1) {

 case 0:

 model_ref_Y.Out1 = (model_ref_U.In2 + model_ref_U.In3) * 5U;

 break;

 case 1:

 if (model_ref_U.In3 > 30U) {

 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 5U;

 if (u16_qY < model_ref_U.In2) {

 u16_qY = MAX_uint16_T;

 }

 model_ref_Y.Out1 = u16_qY;

 } else {

 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 12U;

 if (u16_qY < model_ref_U.In2) {

 u16_qY = MAX_uint16_T;

 }

 model_ref_Y.Out1 = u16_qY;

 }

 break;

 case 2:

 if (model_ref_U.In2 > 20U) {

 model_ref_Y.Out1 = model_ref_U.In2 + model_ref_U.In3;

 } else {

 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 2U;

 if (u16_qY < model_ref_U.In2) {

 u16_qY = MAX_uint16_T;

 }

 model_ref_Y.Out1 = u16_qY;

 }

 break;

 default:

 model_ref_Y.Out1 = u16_Model;

1-33

R2017a

 break;

 }

}

In the model_ref_step function, there are two local variables instead of three local
variables which conserves stack space. Each switch-case statement includes the
corresponding if-else statement. Including the if-else statements in the switch-
case statements increases code execution speed because each if-else statement is only
executed if the corresponding case statement is true.

Code Efficiency: Improve loop fusion for Sum of Elements blocks and
generate less code for temporal logic in Stateflow

Loop fusion for Sum of Elements blocks

In R2017a, the code generator can fuse more for loops involving Sum of Elements
blocks. This optimization conserves ROM consumption and improves code execution
speed.

For example, the model loop_fuse contains a Sum of Elements block inside two
nested For Each subsystems. The diagram shows the model loop_fuse, the For Each
Subsystems and signal dimensions.

1-34

 Performance

In R2016b, the code generator produced this code:

 void loop_fuse_step(void)

{

 int32_T ForEach_itr;

 int32_T ForEach_itr_d;

 real_T tmp;

 real_T rtb_Abs[64];

 int32_T i;

 for (ForEach_itr = 0; ForEach_itr < 500; ForEach_itr++) {

 for (ForEach_itr_d = 0; ForEach_itr_d < 600; ForEach_itr_d++) {

 for (i = 0; i < 64; i++) {

 rtb_Abs[i] = fabs(loop_fuse_U.In1[500 * i + ForEach_itr] -

 loop_fuse_U.In2[600 * i + ForEach_itr_d]);

 }

1-35

R2017a

 tmp = rtb_Abs[0];

 for (i = 0; i < 63; i++) {

 tmp += rtb_Abs[i + 1];

 }

 loop_fuse_B.Out1_CoreSubsysCanOut[ForEach_itr_d] = tmp;

 }

 for (i = 0; i < 600; i++) {

 loop_fuse_Y.Out1[i + 600 * ForEach_itr] =

 loop_fuse_B.Out1_CoreSubsysCanOut[i];

 }

 }

}

The generated code contained separate for loops for the Add and Abs blocks and the
Sum of Elements block.

In R2017a, the code generator produces this code:

void loop_fuse_step(void)

{

 int32_T ForEach_itr;

 int32_T ForEach_itr_d;

 real_T tmp;

 int32_T i;

 for (ForEach_itr = 0; ForEach_itr < 500; ForEach_itr++) {

 for (ForEach_itr_d = 0; ForEach_itr_d < 600; ForEach_itr_d++) {

 tmp = 0.0;

 for (i = 0; i < 64; i++) {

 tmp += fabs(loop_fuse_U.In1[500 * i + ForEach_itr] - loop_fuse_U.In2[600

 * i + ForEach_itr_d]);

 }

 loop_fuse_B.Out1_CoreSubsysCanOut[ForEach_itr_d] = tmp;

 }

 for (i = 0; i < 600; i++) {

 loop_fuse_Y.Out1[i + 600 * ForEach_itr] =

 loop_fuse_B.Out1_CoreSubsysCanOut[i];

 }

 }

}

1-36

 Performance

The generated code contains one for loop for the Add and Abs blocks and the Sum of
Elements block.

More efficient code for temporal logic in Stateflow

For some absolute-time constructs using fixed-point parameters, Stateflow generates
more efficient code that does not contain floating-point operations.

For example, consider after(DELAY, sec) in a chart with a sample time of the chart
< 1 second. DELAY is a fixed-point parameter. Previously the code generator created the
following code:

counter >= (uint32_T)ceil((real_T)DELAY * 0.05 / 0.1 - 1e-9)

.

Now, it generates:

(counter >> 1) >= DELAY

This code contains fewer operations and does not include floating-point operations.

Data copy reduction for Merge blocks

In R2017a, the code generator is improved to better reuse buffers around Merge blocks.
This optimization conserves RAM and ROM consumption and increases code execution
speed.

For example, the model cond_reuse contains the virtual subsystem Subsystem1.
Subsystem1 contains an if-else conditional structure that connects to a Merge block.

1-37

R2017a

In R2016b, the code generator produced this code:

B_cond_reuse_T cond_reuse_B;

DW_cond_reuse_T cond_reuse_DW;

ExtU_cond_reuse_T cond_reuse_U;

ExtY_cond_reuse_T cond_reuse_Y;

RT_MODEL_cond_reuse_T cond_reuse_M_;

RT_MODEL_cond_reuse_T *const cond_reuse_M = &cond_reuse_M_;

void cond_reuse_Subsystem(void)

{

 int32_T i;

 for (i = 0; i < 64; i++) {

 cond_reuse_Y.y[i] = -3.0 * cond_reuse_B.Merge1[i];

 }

}

void cond_reuse_step(void)

{

 int32_T rtb_PulseGenerator;

 real_T rtb_Add[64];

 int32_T i;

 rtb_PulseGenerator = ((cond_reuse_DW.clockTickCounter < 1) &&

 (cond_reuse_DW.clockTickCounter >= 0));

 if (cond_reuse_DW.clockTickCounter >= 19) {

 cond_reuse_DW.clockTickCounter = 0;

 } else {

 cond_reuse_DW.clockTickCounter++;

 }

 for (i = 0; i < 64; i++) {

1-38

 Performance

 rtb_Add[i] = (real_T)rtb_PulseGenerator + cond_reuse_U.u1[i];

 }

 if (cond_reuse_U.u1[1] > 0.0) {

 memcpy(&cond_reuse_B.Merge1[0], &rtb_Add[0], sizeof(real_T) << 6U);

 } else {

 for (i = 0; i < 64; i++) {

 cond_reuse_B.Merge1[i] = 22.0 * rtb_Add[i] * -3.0;

 }

 }

 cond_reuse_Subsystem();

}

The generated code contained full data copies to the temporary arrays rtb_Add and
cond_reuse_B.Merge1.

In R2017a, the code generator produces this code:

DW_cond_reuse_T cond_reuse_DW;

ExtU_cond_reuse_T cond_reuse_U;

ExtY_cond_reuse_T cond_reuse_Y;

RT_MODEL_cond_reuse_T cond_reuse_M_;

RT_MODEL_cond_reuse_T *const cond_reuse_M = &cond_reuse_M_;

void cond_reuse_Subsystem(void)

{

 int32_T i;

 for (i = 0; i < 64; i++) {

 cond_reuse_Y.y[i] *= -3.0;

 }

}

void cond_reuse_step(void)

{

 int32_T rtb_PulseGenerator;

 int32_T i;

 rtb_PulseGenerator = ((cond_reuse_DW.clockTickCounter < 1) &&

 (cond_reuse_DW.clockTickCounter >= 0));

 if (cond_reuse_DW.clockTickCounter >= 19) {

 cond_reuse_DW.clockTickCounter = 0;

 } else {

 cond_reuse_DW.clockTickCounter++;

 }

 if (cond_reuse_U.u1[1] > 0.0) {

 for (i = 0; i < 64; i++) {

1-39

R2017a

 cond_reuse_Y.y[i] = (real_T)rtb_PulseGenerator + cond_reuse_U.u1[i];

 }

 } else {

 for (i = 0; i < 64; i++) {

 cond_reuse_Y.y[i] = ((real_T)rtb_PulseGenerator + cond_reuse_U.u1[i]) *

 22.0 * -3.0;

 }

 }

 cond_reuse_Subsystem();

}

The temporary arrays rtb_Add and cond_reuse_B.Merge1 and their associated data
copies are not in the generated code. For the preceding model, you can also specify buffer
reuse using Simulink.Signal objects. See “Specify Buffer Reuse for Multiple Signals in
a Path”.

More instances of buffer reuse for blocks and subsystems in a chain

In R2017a, the code generator can automatically reuse buffers for more modeling
patterns involving blocks and subsystems in a chain. Specifically, the code generator can
reuse buffers for these modeling patterns:

• A chain of blocks that includes reusable and nonreusable subsystems
• A chain of reusable subsystems
• A chain of blocks that includes a root-level Outport block
• A chain of blocks that includes a mixture of signals with auto and reusable custom

storage class specifications. However, the reusable custom storage class specification
must be on a signal that leaves a root-level Inport block or enters a root-level Outport
block.

Note: For buffer reuse to occur for these modeling patterns, in the Configuration
Parameters dialog box, on the All Parameters tab, set the Optimize global data
access parameter to Use global to hold temporary results. For models
containing reusable subsystems, on the Optimization > Signals and Parameters tab,
set the Pass reusable subsystem outputs as parameter to Individual arguments.

These optimizations reduce data copies in the generated code thereby conserving RAM
and ROM consumption and improving code execution speed.

1-40

 Performance

Buffer reuse for a chain of reusable and nonreusable subsystems

The code generator can now reuse buffers for a chain of reusable and nonreusable
subsystems. This chain can include a root-level Outport block. It can also contain a
mixture of signals with auto and reusable custom storage class specifications. However,
the reusable custom storage class specification must be on a signal that leaves a root-
level Inport block or enters a root-level Outport block.

For example, the model Chainbuffer contains the reusable subsystems Subsystem,
Subsystem1, and Subsystem2. For a reusable subsystem, the generated code is a
function with arguments.

The model also contains the nonreusable subsystem Subsystem3. For Subsystem3, the
Function interface parameter has a value of void-void. The signal leaving u and
entering Out1 resolves to the Simulink.signal X. X has a reusable custom storage
class.

In R2016b, the code generator produced this code.

real_T X[64];

B_Chainbuffer_T Chainbuffer_B;

...

void Chainbuffer_Subsystem3(void)

{

 int32_T i;

 for (i = 0; i < 64; i++) {

 X[i] = 22.0 * Chainbuffer_B.Gain[i] * 22.0;

 }

}

void Chainbuffer_step(void)

{

 int32_T rtb_PulseGenerator;

 real_T rtb_Gain1_o[64];

 real_T rtb_Gain1_a[64];

1-41

R2017a

 rtb_PulseGenerator = ((Chainbuffer_DW.clockTickCounter < 1) &&

 (Chainbuffer_DW.clockTickCounter >= 0));

 if (Chainbuffer_DW.clockTickCounter >= 19) {

 Chainbuffer_DW.clockTickCounter = 0;

 } else {

 Chainbuffer_DW.clockTickCounter++;

 }

 Chainbuffer_Subsystem((&(X[0])), (real_T)rtb_PulseGenerator, rtb_Gain1_o);

 Chainbuffer_Subsystem1(rtb_Gain1_o, rtb_Gain1_a);

 Chainbuffer_Subsystem1(rtb_Gain1_a, Chainbuffer_B.Gain);

 for (rtb_PulseGenerator = 0; rtb_PulseGenerator < 64; rtb_PulseGenerator++) {

 Chainbuffer_B.Gain[rtb_PulseGenerator] *= 22.0;

 }

 Chainbuffer_Subsystem3();

}

The generated code contained the global buffer Chainbuffer_B.Gain and the
local buffers rtb_Gain1_o and rtb_Gain1_a for holding the inputs and outputs of
Subsystem, Subsystem1, Subsystem2, and Subsystem3.

In R2017a, the code generator produces this code.

real_T X[64];

...

void Chainbuffer_Subsystem3(void)

{

 int32_T i;

 for (i = 0; i < 64; i++) {

 X[i] = 22.0 * X[i] * 22.0;

 }

}

void Chainbuffer_step(void)

{

 int32_T rtb_PulseGenerator;

 rtb_PulseGenerator = ((Chainbuffer_DW.clockTickCounter < 1) &&

 (Chainbuffer_DW.clockTickCounter >= 0));

 if (Chainbuffer_DW.clockTickCounter >= 19) {

 Chainbuffer_DW.clockTickCounter = 0;

 } else {

 Chainbuffer_DW.clockTickCounter++;

 }

 Chainbuffer_Subsystem((&(X[0])), (real_T)rtb_PulseGenerator, (&(X[0])));

1-42

 Performance

 Chainbuffer_Subsystem1((&(X[0])), (&(X[0])));

 Chainbuffer_Subsystem1((&(X[0])), (&(X[0])));

 for (rtb_PulseGenerator = 0; rtb_PulseGenerator < 64; rtb_PulseGenerator++) {

 X[rtb_PulseGenerator] = 22.0 * X[rtb_PulseGenerator];

 }

 Chainbuffer_Subsystem3();

}

The generated code contains the global buffer X for holding the inputs and outputs of
Subsystem, Subsystem1, Subsystem2, and Subsystem3.

Buffer reuse for a chain of reusable subsystems

The code generator can now reuse the arguments of reusable subsystems in a chain.

For example, the model subsreuse contains four subsystems. For the four subsystems,
in the Subsystem Block Parameters dialog box, on the Code Generation tab, the
Function packaging parameter is set to Reusable function. The input and
output signals resolve to the Simulink.Signal X. This signal has a Storage class of
Reusable (Custom).

In R2016b, the code generator produced this code:

void subsreuse_step(void)

{

 real_T rtb_Gain_n[64];

 real_T rtb_Gain_m[64];

 subsreuse_Subsystem1((&(X[0])), rtb_Gain_n, (P_Subsystem1_subsreuse_T *)

 &subsreuse_P.Subsystem1);

 subsreuse_Subsystem2(rtb_Gain_n, rtb_Gain_m, (P_Subsystem2_subsreuse_T *)

 &subsreuse_P.Subsystem2);

 subsreuse_Subsystem2(rtb_Gain_m, rtb_Gain_n, (P_Subsystem2_subsreuse_T *)

 &subsreuse_P.Subsystem4);

 subsreuse_Subsystem1(rtb_Gain_n, (&(X[0])), (P_Subsystem1_subsreuse_T *)

 &subsreuse_P.Subsystem3);

}

1-43

R2017a

The code contained two temporary variables, rtb_Gain_n and rtb_Gain_m, for holding
the input and output of each function.

In R2017a, the code generator produces this code:

void subsreuse_step(void)

{

 subsreuse_Subsystem1((&(X[0])), (&(X[0])), (P_Subsystem1_subsreuse_T *)

 &subsreuse_P.Subsystem1);

 subsreuse_Subsystem2((&(X[0])), (&(X[0])), (P_Subsystem2_subsreuse_T *)

 &subsreuse_P.Subsystem2);

 subsreuse_Subsystem2((&(X[0])), (&(X[0])), (P_Subsystem2_subsreuse_T *)

 &subsreuse_P.Subsystem3);

 subsreuse_Subsystem1((&(X[0])), (&(X[0])), (P_Subsystem1_subsreuse_T *)

 &subsreuse_P.Subsystem4);

}

The generated code uses one global variable X for the input and output of each function.

Improved buffer reuse due to changes in block execution order

In R2016b, if you specified a signal for reuse, the code generator changed the block
operation order so that buffer reuse occurred.

In R2017a, even if you do not specify a signal for reuse, the code generator can change
the block operation order so that buffer reuse can occur. If the generated code contains
extra buffers, you can try to eliminate them by setting the Optimize block operation
order in the generated code parameter to Improve Execution Speed. In the
Configuration Parameters dialog box, this parameter is on the All Parameters tab.
Reusing buffers conserves RAM and ROM consumption and improves code execution
speed.

For example, for the model rtwdemo_optimizeblockorder, the red numbers that
follow the zeroes and colons represent the block execution order in R2016b. The Matrix
Concatenate block executes after the Subtract block. The Sum of Elements block executes
after the Product block. This block execution order prevents the same variables from
being reused as the input and output to the Subtract and Product blocks in the generated
code. As a result, there are two extra temporary arrays, two extra variables, and
associated data copies for holding the inputs to these blocks.

1-44

 Performance

In R2017a, the code generator can reorder the block execution order so that the Matrix
Concatenate block executes before the Subtract block and the Sum of Elements block
executes before the Product block. Reordering block operations eliminates the two
temporary arrays, the two variables, and their associated data copies from the generated
code. The blocks can use the same variable for the input and output.

1-45

R2017a

Note: To implement buffer reuse, the code generator does not violate user-specified block
priorities.

For more information, see“Remove Data Copies by Reordering Block Operations in the
Generated Code”.

More efficient code for Bus Creator blocks

In R2017a, the generated code contains additional optimizations for modeling patterns
involving Bus Creator blocks. These optimizations include turning global variables into
local variables, buffer elimination, data copy reduction, and expression folding. The
optimizations improve ROM and RAM consumption and increase code execution speed.

For example, the model bus_creator_ex contains two Bus Creator blocks.

1-46

 Performance

In R2016b, the bus_creator.c file contained this code:

void bus_creator_ex_step(void)

{

 Ifx_DPResultU16_Type dpResult;

 Ifx_DPResultU16_Type dpResult_0;

 Ifx_DPSearch_u8(&dpResult,

 bus_creator_ex_ConstP.Vector_Value[bus_creator_ex_DW.Output_DSTATE],

 2U, (*Rte_CData_BP1_SlopeBiasScaling_0_8_0p5_0()));

 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index = dpResult.Index;

 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio = dpResult.Ratio;

 dpResult_0.Index = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index;

 dpResult_0.Ratio = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio;

 bus_creator_ex_Y.Out6 = Ifx_IpoCur_u8(&dpResult_0,

 (*Rte_CData_TB1_SlopeBiasScaling_0_8_0p5_0()));

 bus_creator_ex_DW.Output_DSTATE++;

}

The code contained two local variables dpResult and dpResult_0 for holding values
prior to and from the Bus Creator blocks.

In R2017a, the bus_creator.c file contains this code:

void bus_creator_ex_step(void)

{

 Ifx_DPResultU16_Type dpResult;

 Ifx_DPSearch_u8(&dpResult,

 bus_creator_ex_ConstP.Vector_Value[bus_creator_ex_DW.Output_DSTATE],

 2U, (*Rte_CData_BP1_SlopeBiasScaling_0_8_0p5_0()));

 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index = dpResult.Index;

 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio = dpResult.Ratio;

 dpResult.Index = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index;

 dpResult.Ratio = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio;

 bus_creator_ex_Y.Out6 = Ifx_IpoCur_u8(&dpResult,

 (*Rte_CData_TB1_SlopeBiasScaling_0_8_0p5_0()));

 bus_creator_ex_DW.Output_DSTATE++;

}

The generated code contains one less local variable.

Buffer reuse for Variant Source blocks

In R2017a, the code generator can reuse the buffer for Variant Source blocks.

1-47

R2017a

For example, the model VariantMergeReuse contains two Variant Source blocks.

In R2016b, the code generator produced this code in the VariantMergeReuse step
function:

#if V == 1 || V == 2

 real_T rtb_VariantMerge_For_Variant_So;

#endif /* V == 1 || V == 2 */

#if (V == 1 && W == 1) || (V == 2 && W == 1) || W == 2

 real_T rtb_VariantMerge_For_Variant__k;

#endif

The code contained two buffers for holding intermediate values.

In R2017a, the code generator produces this code in the VariantMergeReuse step
function:

#if V == 1 || V == 2 || W == 2

 real_T rtb_VariantMerge_For_Variant_So;

1-48

 Performance

#endif /* V == 1 || V == 2 || W == 2 */

The code contains one buffer for holding intermediate values.

1-49

R2017a

Verification

SIL and PIL Testing: Log signals inside exported functions and stream
signals to Simulation Data Inspector during simulation

To examine internal signals of a model component, you can enable internal signal logging
for a top-model or Model block software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation. In R2017a, you can:

• Log signals inside export-function models.
• Stream the logged signals to the Simulation Data Inspector, where you can observe

the signals during the SIL or PIL simulation.

For more information, see:

• “Log Internal Signals of a Component”
• “Export-Function Models” (Simulink)
• “General SIL and PIL Limitations”

Verification of PIL target connectivity configuration

The piltest function provides additional tests for verifying your custom processor-in-
the-loop (PIL) target connectivity configuration.

'Testpoint' Argument Value Description

'verifyTopModelSILPILSwitching' New in R2017a.

For a Simulink top model, the function:

• Verifies that production code is not regenerated when
the simulation mode switches between software-
in-the-loop (SIL) and PIL. The function compares
timestamps of the production code used in each mode.

• Compares results from SIL and PIL mode simulations
to results from a normal mode simulation.

'verifyModelBlockSILPILSwitching'New in R2017a.

For a Simulink Model block, the function:

1-50

 Verification

'Testpoint' Argument Value Description

• Verifies that production code is not regenerated when
the Model block simulation mode switches between
SIL and PIL. The function compares timestamps of
the production code used in each mode.

• Runs simulation loops with the Model block in
SIL and PIL modes. The function varies the Code
interface Model block parameter, setting this
parameter to Top model or Model reference.

The function compares results from SIL and PIL mode
simulations to results from a normal mode simulation.

'verifyModelBlock' Updated in R2017a.

The function runs simulation loops with a Simulink
Model block in PIL mode. The function varies the
Configuration Parameters > Code Generation >
Language parameter, setting this parameter to C or
C++. For C++, the function sets Code Generation >
Interface > Code interface packaging to C++ class.

Previously, Language was set to C .

For more information, see “Create PIL Target Connectivity Configuration”.

1-51

R2017a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

1-52

http://www.mathworks.com/support/bugreports/

R2016b
Version: 6.11

New Features

Bug Fixes

Compatibility Considerations

R2016b

Code Generation from MATLAB Code

Static code metrics report for C++ code

In R2016b, when you generate standalone C++ code, the HTML code generation report
includes a static code metrics report. See Generate a Static Code Metrics Report for
MATLAB Code and Static Code Metrics.

Verification of size_t and ptrdiff_t hardware settings

In the project build settings, on the Hardware tab, R2016b provides values for the
ANSI® C data types size_t and ptrdiff_t. At the start of a processor-in-the-loop (PIL)
execution, the software verifies the values with reference to the target hardware.

Verification of PIL target connectivity configuration

Through the piltest function, you can use a test suite to verify your custom processor-
in-the-loop (PIL) target connectivity configuration. Verify the target connectivity
configuration early and independently of your algorithm development and code
generation.

For more information, see:

• Create PIL Target Connectivity Configuration
• PIL Execution of Code Generated for a Kalman Estimator

Optimization for array indexing in loops

In R2016b, if you use Embedded Coder to generate C/C++ code from MATLAB code, you
can enable an optimization that simplifies array indexing in loops in the generated code.
When possible, for array indices in loops, this optimization replaces multiply operations
with add operations. Multiply operations can be expensive. This optimization, referred to
as strength reduction, is useful when the C/C++ compiler on the target platform does not
optimize the array indexing.

Here is code generated without the optimization:

for (i = 0; i < 10; i++) {

2-2

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/piltest_mc.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/processor-in-the-loop-execution-from-the-command-line.html#bufn6wq

 Code Generation from MATLAB Code

 z[5 * (1 + i) - 1] = x[5 * (1 + i)];

 }

Here is code generated with the optimization:

for (b_i = 0; b_i < 10; b_i++) {

 z[i + 4] = x[i + 5];

 i += 5;

 }

By default, the strength reduction optimization is disabled. To enable it:

• At the command line, set the configuration object parameter
EnableStrengthReduction to true.

• In the MATLAB Coder app, project build settings, on the All Settings tab, set
Simplify array indexing to Yes.

Even when the optimization replaces the multiply operations in the generated code, it is
possible that the C/C++ compiler can generate multiply instructions.

Reduction of the Intel Performace Primatives (IPP) code replacement
libraries (CRL)

The code replacement libraries (CRL) related to features, such as matrix multiple and
dot product, that are no longer supported by the Intel Performace Primatives (IPP)
library will be removed in a future release.

2-3

R2016b

Model Architecture and Design

AUTOSAR Basic Software (BSW) Services: Simulate BSW including
Diagnostic Event Manager (DEM) and NVRAM Manager (NvM)

The AUTOSAR standard defines important services as part of Basic Software (BSW)
that runs in the AUTOSAR runtime environment (RTE). Examples include the NVRAM
Manager (NvM) and the Diagnostic Event Manager (Dem). In the AUTOSAR RTE,
AUTOSAR software components typically access BSW services using client-server or
sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, R2016b adds
an AUTOSAR Basic Software block library. The library contains preconfigured Function
Caller blocks for modeling component calls to AUTOSAR BSW services.

• Diagnostic Event Manager (Dem) blocks — Calls to Dem service interfaces,
including CallbackEventStatusChangeCaller, DiagnosticInfoCaller, and
DiagnosticMonitorCaller.

• NVRAM Manager (NvM) blocks — Calls to NvM service interfaces, including
NvMAdminCaller and NvMServiceCaller.

To implement client calls to AUTOSAR BSW service interfaces in your AUTOSAR
software component, you drag and drop Basic Software blocks into an AUTOSAR model
and click a Synchronize icon. The software automatically configures the client calls
in the AUTOSAR configuration. For more information, see Model AUTOSAR Basic
Software (BSW) Service Calls, Configure Calls to AUTOSAR Diagnostic Event Manager
(Dem) Service, and Configure Calls to AUTOSAR NVRAM Manager (NvM) Service.

AUTOSAR Parameters: Model STD_AXIS and COM_AXIS lookup table
parameters, export SwRecordLayouts, and apply SwAddrMethods

R2016b enhances AUTOSAR calibration parameter and data modeling with additional
support for:

• “AUTOSAR STD_AXIS and COM_AXIS lookup tables” on page 2-5
• “AUTOSAR port-based and internal calibration parameters” on page 2-5
• “AUTOSAR SwRecordLayouts for lookup tables” on page 2-6
• “AUTOSAR SwAddrMethods for measurement and calibration tools” on page 2-6

2-4

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/callbackeventstatuschangecaller.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/diagnosticinfocaller.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/diagnosticmonitorcaller.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/nvmadmincaller.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/nvmservicecaller.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/model-autosar-basic-software-bsw-service-calls.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/model-autosar-basic-software-bsw-service-calls.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-diagnostic-event-manager-dem-service.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-diagnostic-event-manager-dem-service.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-nvram-manager-nvm-service.html

 Model Architecture and Design

AUTOSAR STD_AXIS and COM_AXIS lookup tables

AUTOSAR applications can use lookup tables in either or both of two ways:

• Implement high-performance search operations.
• Support tuning of the application with measurement and calibration tools.

To model lookup tables for automotive application tuning, use the new classes
Simulink.LookupTable and Simulink.Breakpoint to store tunable table and breakpoint
data. Simulink lookup table blocks have additional parameters to support the use of
Simulink.LookupTable and Simulink.Breakpoint objects. AUTOSAR models can
leverage the new classes to model STD_AXIS and COM_AXIS lookup tables. In Simulink,
you can:

• Import arxml files that contain AUTOSAR lookup tables in STD_AXIS and
COM_AXIS configurations.

• Create STD_AXIS and COM_AXIS lookup tables and map them to AUTOSAR
parameters. In R2016b, you can create AUTOSAR parameters for lookup tables
graphically, using the AUTOSAR Properties Explorer, or programmatically, using
AUTOSAR property functions. For more information, see “AUTOSAR port-based and
internal calibration parameters” on page 2-5.

• Generate arxml and C code with STD_AXIS and COM_AXIS lookup table content.

For more information, see Configure STD_AXIS and COM_AXIS Lookup Tables for
AUTOSAR Measurement and Calibration.

AUTOSAR port-based and internal calibration parameters

To support mapping a Simulink lookup table to an AUTOSAR parameter, you can
now create AUTOSAR calibration parameters (ParameterDataPrototypes) using
the AUTOSAR Properties Explorer or AUTOSAR property functions. You can create
either internal AUTOSAR parameters, defined and accessed only within your software
component, or port-based AUTOSAR parameters, associated with a port-based parameter
interface.

The AUTOSAR parameters that you create subsequently are available for Simulink
lookup table mapping, using the Simulink-AUTOSAR Mapping Explorer or AUTOSAR
map functions.

For more information, see Configure AUTOSAR Port-Based Calibration Parameters.

2-5

http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.lookuptable-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.breakpoint-class.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-com-axis-lookup-table-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-com-axis-lookup-table-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-port-based-calibration-parameters.html

R2016b

AUTOSAR SwRecordLayouts for lookup tables

AUTOSAR software components use software record layouts (SwRecordLayouts) to
specify how to serialize data in the memory of an AUTOSAR ECU. The arxml importer
imports and preserves the SwRecordLayout property for AUTOSAR data.

R2016b allows you to import SwRecordLayouts from arxml files in either of two ways:

• If you create your AUTOSAR model from arxml files using importer method
createComponentAsModel, include an arxml file that contains SwRecordLayout
definitions in the import. The imported SwRecordLayouts are preserved and
subsequently exported in arxml code.

• If you create your AUTOSAR model in Simulink, you can import reference definitions
of SwRecordLayouts from arxml files. When you generate model code, the exported
arxml code contains references to the imported read-only SwRecordLayout
elements, but not their definitions.

For more information, see Configure AUTOSAR Data for Measurement and Calibration.

AUTOSAR SwAddrMethods for measurement and calibration tools

AUTOSAR software components use software address methods (SwAddrMethods) to
group data in memory for access by measurement and calibration tools. In an AUTOSAR
software component configuration, you assign common memory sections to data. When
the runtime environment instantiates calibration parameters, calibration parameters
that reference the same SwAddrMethod are placed within the same calibration
parameter group.

The arxml importer imports and preserves the SwAddrMethod property for AUTOSAR
data. In previous releases, in Simulink, you could assign memory sections to global
constant and static memory, using AUTOSAR data objects. But you could not assign
SwAddrMethods or memory sections to data accessed by RTE function calls, such as
sender-receiver (S-R) interface data elements or inter-runnable variables (IRVs).

R2016b allows you to graphically or programmatically select imported SwAddrMethod
values for AUTOSAR data accessed by RTE function calls.

2-6

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-data-for-measurement-and-calibration.html

 Model Architecture and Design

When you build the model, the exported arxml code reflects the SwAddrMethod values
you selected.

For more information, see Configure AUTOSAR Data for Measurement and Calibration.

AUTOSAR startup, reset, and shutdown modeling

AUTOSAR applications sometimes require complex logic to execute during system
initialization, reset, and termination sequences. R2016b introduces the Simulink
blocks Initialize Function and Terminate Function. You can use these blocks to control
execution of a component in response to initialize, reset, or terminate events at any level
of a model hierarchy. Each nonvirtual subsystem can have its own set of initialize, reset,
and terminate functions. In a lower-level model, Simulink aggregates the content of the
functions with corresponding instances in the parent model.

2-7

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-data-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html

R2016b

AUTOSAR models can leverage the new blocks to model potentially complex AUTOSAR
startup, reset, and shutdown sequences. The subsystems work with any AUTOSAR
component modeling style.

For more information, see Startup, Reset, and Shutdown and Configure AUTOSAR
Initialize, Reset, or Terminate Runnables.

AUTOSAR external trigger event communication

AUTOSAR Release 4.0 introduced external trigger event communication, in which
an AUTOSAR component or service signals an external trigger occurred event
(ExternalTriggerOccurredEvent) to another component. The receiving component
activates a runnable in response to the event.

Embedded Coder now supports modeling the receiver portion of AUTOSAR
external trigger event communication. In a component that you want to react to an
external trigger, you create a trigger interface, a trigger receiver port to receive an
ExternalTriggerOccurredEvent, and a runnable that is activated by the event.

For more information, see Configure Receiver for AUTOSAR External Trigger Event
Communication.

AUTOSAR support for JMAAB model architecture

Embedded Coder supports AUTOSAR code generation for the model architectures
described in the Japan MBD Automotive Advisory Board (JMAAB) document Control
Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow - Version 4.01.
The document is available from the MAAB Web page at http://www.mathworks.com/
solutions/automotive/standards/maab.html.

The document describes three layouts for the top layer of a controller model:

• Simple control model — Represents a functions layer and a scheduling layer in one
layer.

• Complex control model type alpha (α) — Places a scheduling layer above function
layers.

• Complex control model type beta (β) — Places function layers above scheduling layers.

R2016b adds support for JMAAB type beta modeling in AUTOSAR models. For
example, here is an AUTOSAR example model, rtwdemo_autosar_swc_fcncalls,

2-8

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/autosar-software-components.html#bvg3rfo-1
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-initialization-reset-or-terminate-runnables.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-initialization-reset-or-terminate-runnables.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-trigger-commnication.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-trigger-commnication.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html

 Model Architecture and Design

in which an asynchronous function-call runnable at the top level of the model interacts
with a periodic rate-based runnable. This type of component leverages periodic and
asynchronous rates (sample times).

For more information about this component modeling style, see .Add Top-Level
Asynchronous Trigger to Periodic Rate-Based System.

AUTOSAR ExplicitReceiveByVal data access mode for receiver ports

R2016b adds support for modeling scalar explicit read by value access for AUTOSAR
receiver ports, and generating the corresponding AUTOSAR API Rte_DRead in C code.
Reading data by value can produce more efficient and readable C code and reduce RAM
requirements.

In Simulink, you can model the data access in the following ways:

• Import an arxml file that uses DATA-RECEIVE-POINT-BY-VALUES variable access
for a port. The importer creates a root inport with ExplicitReceiveByVal data
access and maps it to an AUTOSAR receiver port.

• Create a root inport, select ExplicitReceiveByVal data access, and map it to an
AUTOSAR receiver port.

2-9

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html

R2016b

When you build the model, the exported arxml code defines DATA-RECEIVE-POINT-
BY-VALUES variable access for the AUTOSAR receiver port.
<RUNNABLE-ENTITY UUID="...">

...

 <SHORT-NAME>Runnable_Step</SHORT-NAME>

...

 <DATA-RECEIVE-POINT-BY-VALUES>

 <VARIABLE-ACCESS UUID="...">

 <SHORT-NAME>IN_Input_Input</SHORT-NAME>

 <ACCESSED-VARIABLE>

 <AUTOSAR-VARIABLE-IREF>

 <PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">

 /pkg/swc/rtwdemo_autosar_counter/Input</PORT-PROTOTYPE-REF>

 <TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">

 /pkg/if/Input/Input</TARGET-DATA-PROTOTYPE-REF>

 </AUTOSAR-VARIABLE-IREF>

 </ACCESSED-VARIABLE>

 </VARIABLE-ACCESS>

 </DATA-RECEIVE-POINT-BY-VALUES>

...

</RUNNABLE-ENTITY>

The generated C code uses Rte_DRead API calls to receive the port data by value.
void Runnable_Step(void)

{

 ...

 /* Gain: '<S1>/Gain' incorporates:

 * Inport: '<Root>/Input'

 *

 * Block description for '<S1>/Gain':

 * This block references an AUTOSAR calibration parameter, which is

 * accessed using the AUTOSAR Rte_Calprm function signature.

 */

 rtwdemo_autosar_counter_B.Gain = Rte_Prm_rCounter_K() *

 Rte_DRead_Input_Input();

 ...

}

AUTOSAR ModeSenderPorts and ModeSwitchPoints for application mode
management

AUTOSAR mode-switch (M-S) communication relies on a mode manager and connected
mode users. The mode manager is an authoritative source for software components to
query the current mode and to receive notification when the mode changes. A mode
manager can be provided by AUTOSAR Basic Software (BSW) or implemented as an
AUTOSAR software component. A mode manager implemented as a software component
is called an application mode manager. A software component that queries the mode
manager and receives notifications of mode changes is a mode user.

2-10

 Model Architecture and Design

R2016b enhances Simulink modeling of AUTOSAR M-S communication by adding the
ability to model application mode manager components, including AUTOSAR mode
sender ports (as defined in AUTOSAR Release 4). Mode sender ports output a mode
switch to connected mode user components. For example, here is an application mode
manager, modeled in Simulink, that uses a mode sender port to output the current value
of EngineMode.

For more information, see Mode-Switch Interface and Configure AUTOSAR Mode-Switch
Communication.

AUTOSAR reference element definitions for sharing among components
and services

R2016b supports a new workflow for importing external AUTOSAR element definitions,
defined in arxml files, for sharing among multiple AUTOSAR components and services.
Benefits of sharing and reusing AUTOSAR element definitions include lower risk of
definition conflicts and easier code integration. You can manage shared definitions in a
centralized way.

Suppose that you have a large number of AUTOSAR software components that use
similar packageable AUTOSAR elements in similar ways. You can define sets of reference
elements in arxml files, and your software components can share them on a read-only
basis. Each software component can import the element definitions it requires and
reference them. When you build the model, exported arxml code contains references to
the shared elements, but not their definitions. Their definitions remain in the reference
element arxml source files.

If definitions of reference elements change, you modify them in the arxml files, and then
import the updated definitions into the affected software components.

AUTOSAR elements that are supported for reference use in Simulink include:

2-11

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/autosar-communication.html#bt5cdpc
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-mode-receiver-ports-and-events.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-mode-receiver-ports-and-events.html

R2016b

• CompuMethod, Unit, and PhysicalDimension
• ImplementationDataType and SwBaseType
• SwSystemConst, SwSystemConstValueSet, and PredefinedVariant
• SwRecordLayout

• SwAddrMethod

For more information, see Import or Update Shared AUTOSAR Reference Element
Definitions.

ERT Target Code Generation: Remove unreachable reset and disable
functions to reduce dead code

In some model referencing contexts for ERT targets, generating code models can contain
reset and disable functions that are dead code. You can use two new configuration
parameters to remove the generated disable and reset functions that cannot be
reached from anywhere in the generated code. Avoiding dead code is essential in safety-
critical applications.

The new configuration parameters are:

• Remove reset function (RemoveResetFunction)
• Remove disable function (RemoveDisableFunction)

See Remove Reset and Disable Functions from the Generated Code.

Compatibility Considerations

The Remove reset function configuration parameter replaces the Optimize
initialization code for model reference parameter.

• In R2016b, if you load a legacy model from an earlier release that has the Optimize
initialization code for model reference parameter set, the new Remove
reset function parameter is set to produce the same behavior as the Optimize
initialization code for model reference parameter produced.

• If you save a model created in R2016b to an earlier release, the Optimize
initialization code for model reference parameter is updated appropriately. The

2-12

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/import-or-update-shared-autosar-reference-element-definitions.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/import-or-update-shared-autosar-reference-element-definitions.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/remove-reset-method.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/remove-disable-method.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/remove-reset-and-disable-functions-from-the-generated-code.html

 Model Architecture and Design

model saved to a previous version reflects the behavior that was specified with the
Remove reset function parameter.

Conditional compile time check for imported macros with
ImportedDefine custom storage class

In R2016a, for a model that contained variant blocks and a Simulink.Parameter
with an ImportedDefine custom storage class, the compile-time check for the
Simulink.Parameter was unconditional. If the Simulink.Parameter was undefined,
there was an error even if the Simulink.Parameter was in the inactive variant.

In R2016b, the compile-time check is conditional, so the error occurs only if the
Simulink.Parameter is undefined and in the active variant.

Suppose that a model contains two Variant Subsystem blocks, Variant A and Variant
B. Variant B contains a Constant block in which the Constant value parameter is the
Simulink.Parameter myvar. myvar has an ImportedDefine custom storage class.

In R2016a, the model.h file contained this code:

#ifndef myvar

#error The variable for the parameter "myvar" is not defined

#endif

The code for myvar was not conditionally compiled. If you did not define myvar in a user-
provided header file, there was an error.

In R2016b, the model.h file contains this code:

#if Variant B

#ifndef myvar

#error The variable for the parameter "myvar" is not defined

#endif

There is an error only if myvar is undefined and Variant B is the active variant because
the code for myvar is conditionally compiled. See Variant Systems.

Additional guarding of global data for variant systems

In R2016a, for models that contained Variant Source or Variant Sink blocks,
preprocessor conditionals surrounded global variable declarations for root inports and
root outports.

2-13

http://www.mathworks.com/help/releases/R2016b/ecoder/variant-systems.html

R2016b

In R2016b, preprocessor conditionals also surround most global variable declarations
for Dwork vectors, signals, and states. The inclusion of preprocessor conditionals around
these global variable declarations conserves RAM because the code is not compiled unless
these global variables are part of the active variant.

For example, the model inline_variants_example contains three Variant Source
blocks. Variant Source is in the top model and in Subsystem. Variant Source1 is
in the top model. Subsystem contains a Unit Delay block and a signal with a Signal
Name of sig1.

For Variant Source, if the Simulink.Parameter V equals 1, the top port
is active. If V equals 2, the bottom port is active. For Variant Source1, if the
Simulink.Parameter W equals 1, the top port is active. If W equals 2, the bottom port is
active.

2-14

 Model Architecture and Design

In R2016a, in the inline_variants_example.h file, for block signals and states, the
code generator produced this code.

/* Block signals (auto storage) */

typedef struct {

 real_T VariantMerge_For_Variant_Source;

 real_T Sine3; /* '<Root>/Sine3' */

 real_T sig1; /* '<S1>/Unit Delay' */

} B_inline_variants_example_T;

2-15

R2016b

/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T delay1; /* '<S1>/Unit Delay' */

 int32_T counter; /* '<Root>/Sine1' */

 int32_T counter_f; /* '<Root>/Sine4' */

 int32_T counter_e; /* '<Root>/Sine5' */

 int32_T counter_fl; /* '<Root>/Sine3' */

} DW_inline_variants_example_T;

Preprocessor conditionals do not surround the global variable declarations.

In R2016b, in the inline_variants_example.h file, the code generator produces this
code.

/* Block signals (auto storage) */

typedef struct {

 real_T VariantMerge_For_Variant_Source;

 real_T Sine3; /* '<Root>/Sine3' */

#if V == 2

 real_T sig1; /* '<S1>/Unit Delay' */

#define B_INLINE_VARIANTS_EXAMPLE_T_VARIANT_EXISTS

#endif /* V == 2 */

} B_inline_variants_example_T;

/* Block states (auto storage) for system '<Root>' */

typedef struct {

#if V == 2

 real_T delay1; /* '<S1>/Unit Delay' */

#define DW_INLINE_VARIANTS_EXAMPLE_T_VARIANT_EXISTS

#endif /* V == 2 */

 int32_T counter; /* '<Root>/Sine1' */

 int32_T counter_f; /* '<Root>/Sine4' */

 int32_T counter_e; /* '<Root>/Sine5' */

 int32_T counter_fl; /* '<Root>/Sine3' */

} DW_inline_variants_example_T;

2-16

 Model Architecture and Design

For block signals and states, preprocessor conditionals do surround the global variable
declarations. See Represent Variant Source and Sink Blocks in Generated Code.

2-17

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/represent-inline-variants-in-generated-code.html

R2016b

Data, Function, and File Definition

Simulink Function Code Interface: Configure generated C/C++ function
interfaces for Simulink Function and Function Caller blocks

With Embedded Coder, you can customize generated C/C++ function interfaces. Function
code interface configuration supports easier integration of generated code with functions
or function calls in external code and customizations for coding standards or design
requirements.

R2016b extends function code interface configuration to Simulink Function and Function
Caller blocks. By opening a dialog box from a selected Simulink Function or Function
Caller block, you can customize the C/C++ function prototype generated for that block.
Your changes for the selected block also update other corresponding Simulink Function
and Function Caller blocks in the model. You can change the generated C/C++ function
name, and the names, type qualifiers, and order of function arguments. Your changes do
not graphically alter the model and do not affect the Simulink function prototype defined
in the block.

For example, you can configure a Simulink function prototype y = f3(u) to generate a
C/C++ function prototype such as void function3(* y, const * u).

2-18

 Data, Function, and File Definition

For more information, see Configure Simulink Function Code Interface.

ERT default value for configuration parameter
ParameterTunabilityLossMsg

In R2016b, the default value for the configuration parameter Diagnostics
> Data Validity > Detect loss of tunability (programmatic name
ParameterTunabilityLossMsg) for ERT-based targets is error. When you use
the configuration parameter Code Generation > System target file to switch to an
ERT-based code generation target from a target that is not ERT-based, Detect loss of
tunability is set to error. If necessary, you can then change the value of Detect loss of
tunability.

Compatibility Considerations

Your scripts that change code generation targets can unintentionally change the setting
for Detect loss of tunability, causing unexpected errors during code generation.

2-19

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/configure-simulink-function-code-interface.html

R2016b

Code Generation

Cross-Release Code Integration: Reuse code generated from earlier
releases

Integrate R2016b generated code with existing:

• Shared code that is custom code or code that you generated from previous releases.
• Model code that you generated from previous releases (R2010a and later).

You avoid the cost of reverification because you reuse the existing code without
modification.

You can use the sharedCodeUpdate function to collocate shared code from multiple
source folders in an existing shared code folder. R2016b also provides the following
configuration parameters on the Configuration Parameters > All Parameters tab:

• Existing shared code (ExistingSharedCode) — Specifies the folder that contains
the shared code.

• Use only existing shared code (UseOnlyExistingSharedCode) — A diagnostic
setting that determines whether the build process is permitted to generate new
shared code that is not available from the specified folder.

You can use the crossReleaseExport and crossReleaseImport functions to integrate model
code from previous releases when:

• The source models are single-rate, and set to generate nonreusable code with function
prototype control (root-level Inport and Outport blocks are mapped to step function
arguments).

• The model code has been produced by top-model and subsystem build processes.

Follow this workflow:

1 From a previous release, use the crossReleaseExport function to export model
components. Add the function to the search path for that release with the following
command:

addpath(fullfile(matlabRootForR2016b, 'toolbox','coder','xrelexport'));

2 With the crossReleaseImport function, import components from previous releases via
software-in-the-loop (SIL) or processor-in-the-loop (PIL) blocks.

2-20

http://www.mathworks.com/help/releases/R2016b/rtw/sharing-utility-code.html
http://www.mathworks.com/help/releases/R2016b/rtw/code-generation-basics.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/sharedcodeupdate.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseexport.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseimport.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseexport.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseimport.html

 Code Generation

3 Insert the SIL or PIL blocks into your R2016b model.

When you run a model simulation, the simulation runs the previous release code through
the SIL or PIL blocks.

When you build your model, new code is not generated for the components represented by
the SIL or PIL blocks. The model code calls code generated by a previous release.

For more information, see:

• Cross-Release Shared Code Reuse
• Cross-Release Code Integration

Compound Operation Code Replacement: Replace "Multiply Shift Right
Arithmetic" and "Multiply Divide" in generated code with a single custom
operation

R2016b supports replacement of code for these compound operations with a single custom
operation:

• Integer replacement of real, scalar multiplication followed by a shift right arithmetic
operation (RTW_OP_MUL_SRA)

• Integer replacement of real, scalar multiplication followed by a division operation
(RTW_OP_MULDIV)

ARXML import/export and C code generation for latest AUTOSAR 4.2
and 3.2 standard revisions

R2016b extends support of AUTOSAR schema versions 4.2 and 3.2 to include schema
revisions 4.2.2 and 3.2.2. Embedded Coder supports the new schema revisions for import
and export of arxml files and generation of AUTOSAR-compatible C code.

If you import schema 4.2.2 or 3.2.2 arxml code into Simulink, the arxml importer
detects and uses the schema version and revision, and sets the schema version parameter
in the model. For more information on schema import and export, see Select an
AUTOSAR Schema.

If you are developing an AUTOSAR software component based on AUTOSAR schema
version 3.2, schema revision 3.2.2 allows you to include sender-receiver port end-to-end
(E2E) protection, receiver port IsUpdated service, and port-based nonvolatile (NV) data
communication in your component design.

2-21

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/cross-release-shared-code-reuse.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/cross-release-code-integration-workflow.html
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

R2016b

Note: This support is available to R2015b and R2016a Embedded Coder customers by
installing the latest AUTOSAR support package for your release:

• R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.4 or
later

• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.1 or
later

AUTOSAR code replacement library enhancements

R2016b improves the AUTOSAR code replacement library (CRL) by adding support for:

• Functions that perform multiplication followed by a shift right arithmetic operation.
• Arguments of type struct for the lookup table functions that perform prelookup and

interpolation operations.

For more information, see AUTOSAR Code Replacement Library.

Static code metrics report for C++ code

In R2016b, for a Simulink model with the target language set to C++, you can generate a
Static Code Metrics Report. For more information, see Generate Static Code Metrics
Report for Simulink Model and Static Code Metrics.

Static code metrics data produced by Polyspace

In R2016b, for a Simulink model, Polyspace® produces the data in the Static Code
Metrics Report. The report contains the same information types in R2016b as it
contained in R2016a. For a model, in the Function Information section of the Static
Code Metrics Report, there can be differences between the Stack Size and Complexity in
R2016b and R2016a.

Streamlined report pane for easier model configuration

In the Configuration Parameters dialog box, a streamlined Code Generation > Report
pane displays only configuration parameters that you are most likely to use when
configuring your model for code generation.

2-22

http://www.mathworks.com/help/releases/R2016b/ecoder/autosar/code-replacement-for-autosar.html#bugdcpl
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html

 Code Generation

Compatibility Considerations

Following are the configuration parameters on the Code Generation > Report pane
that are now only available on the All Parameters tab.

• Code-to-model
• Model-to-code
• Eliminated / virtual blocks
• Traceable Simulink blocks
• Traceable Stateflow blocks
• Traceable MATLAB blocks
• Summarize which blocks triggered code replacements

Improved traceability between model and code

In R2016b, these features enhance traceability between the model and generated code:

• Line-level traceability
• Highlighted code for multiple blocks or Stateflow objects

Previously, traceability between model and code depended on block comments in the
generated code. If these comments were disabled, traceability was not available. In
R2016b, Embedded Coder provides more precise model-to-code and code-to-model
navigation with traceability to lines of code. Line-level traceability is enabled by default
and is not dependent on block comments in the code.

From the code generation report, click a linked line of code to navigate to corresponding
blocks in the model. From a block or blocks in your model, right-click the block and
select C/C++ Code > Navigate To C/C++ Code. Highlighted lines of code in the code
generation report correspond to your selected model blocks. Line-level traceability
supports Simulink blocks, MATLAB function blocks, and Stateflow objects. The
HTML traceability report and Microsoft® Excel® traceability matrix include line-level
traceability information.

Note: Line-level traceability is not available for some TLC-generated code and for code in
header files.

2-23

R2016b

In R2016b, you can select multiple blocks or Stateflow objects for model-to-code
navigation. To highlight code for multiple objects:

1 To select contiguous blocks to trace, click and drag the cursor over the contiguous
blocks. Alternatively, Shift + click to select the individual blocks.

2 From the selected blocks, right-click the blocks and select C/C++ Code > Navigate
To C/C++ Code. The code generation report highlights lines of code that correspond
to the selected blocks.

Code replacement enhancements

R2016b supports these code replacement enhancements:

• Integer replacement of real, scalar multiplication followed by a shift right arithmetic
or division operation.

• When generating code for models that contain fixed-point calculations, improved
integer code replacements for these saturating, real, scalar operations:

• Addition, RTW_OP_ADD
• Subtraction, RTW_OP_MINUS
• Multiplication, RTW_OP_MUL
• Division, RTW_OP_DIV
• Data type conversion (cast), RTW_OP_CAST

• Improved detection of identity operations to avoid unnecessary replacements.

For more information, see Code Replacement and Code Replacement Customization.

$I macro changed for argument names used as input and output

Previously, when you specified custom function argument names for a Simulink function
by using the Subsystem method arguments parameter, for arguments that were input
and output, the generated code inserted a y for the $I macro. In R2016b, the generated
code inserts a uy.

Improved compliance with MISRA C:2012 Rules 10.1, 10.5, and 10.8

In R2016b, in the Configuration Parameters dialog box, on the Code Generation
> Code Style tab, when you set the Casting Modes parameter to Standards

2-24

http://www.mathworks.com/help/releases/R2016b/ecoder/code-replacement-scec.html
http://www.mathworks.com/help/releases/R2016b/ecoder/code-replacement-customization-scec.html
http://www.mathworks.com/help/releases/R2016b/rtw/ref/subsystem-method-arguments.html

 Code Generation

Compliant, for more modeling patterns, the code generator produces code that is
compliant with the Essential Type Model: Rules 10.1–10.8. See MISRA C:2012 Directives
and Rules.

MISRA C:2012 Rule 10.1

In R2016b, for operations involving Prelookup blocks, the code generator can produce
code that is compliant with MISRA C:2012 Rule 10.1. For example, in the model misra1,
in the Prelookup block parameters dialog box, the Value parameter is a vector with 256
elements.

In R2016a, in the misra1.c file, for the Prelookup block, the code generator produced
this code:

if (u < (((int32_T)bp[0U]) << 16)) {

 bpIndex = 0U;

 *fraction = 0U;

 }

This code is not compliant with MISRA C:2012 Rule 10.1 because the left operand of the
<< operator is a signed integer, which is an inappropriate essential type.

In R2016b, in the misra1.c file, for the Prelookup block, the code generator produces
this code:

if (u < ((int32_T)((uint32_T)(((uint32_T)bp[0U]) << 16)))) {

 bpIndex = 0U;

2-25

http://www.mathworks.com/help/releases/R2016b/codeprover/misra-c2012-directives-and-rules-1.html
http://www.mathworks.com/help/releases/R2016b/codeprover/misra-c2012-directives-and-rules-1.html

R2016b

 *fraction = 0U;

 }

This code is compliant with MISRA C:2012 Rule 10.1 because the left operand is cast to
an unsigned type.

MISRA C:2012 Rules 10.5 and 10.8

In R2016b, for more modeling patterns containing type conversions between different
essential type categories, the code generator produces code that is compliant with MISRA
C:2012 Rules 10.5 and 10.8. For example, in the model misra2, signals with data types
Boolean and unsigned integer feed into a Sum block. The Sum block outputs a signal
with a data type of unsigned integer.

In R2016a, in the misra2.c file, the code generator produced this code:

misra2_Y.out1 = ((uint32_T)(misra2_U.in1 != 0U)) + ((uint32_T)misra2_U.in2);

This code is not compliant with MISRA C:2012 Rules 10.5 and 10.8 because a Boolean,
which is the output of the relational operator, is cast to an unsigned integer.

In R2016b, in the misra2.c file, the code generator produces this code:

2-26

 Code Generation

misra2_Y.out1 = ((uint32_T)((misra2_U.in1 != 0U) ? 1 : 0)) + ((uint32_T)

 misra2_U.in2);

This code is compliant with MISRA C:2012 Rules 10.5 and 10.8 because the ternary
operator prevents a cast from a Boolean to an unsigned integer.

Improved compliance with MISRA AC AGC Rule 12.6

In R2016a, for Variant Subsystem, Variant Source, and Variant Sink blocks, the
preprocessor conditional that checked for only one active variant was not compliant with
MISRA AC AGC Rule 12.6. In R2016b, this preprocessor conditional check is compliant
with this rule. MISRA AC AGC Rule 12.6 states

Operands of logical operators (&&, || and !) should be effectively Boolean. Expressions
that are effectively Boolean should not be used as operands to operators other than (&&,
||, or !).

For example, the model misra_check contains two Variant Subsystems, Variant1
and Variant2. For Variant Subsystem, if the Simulink.Parameter VC
equals 1, Variant1 is active. If VC equals 2, Variant2 is active. For Variant
Subsystem1, if the Simulink.Variant V1 evaluates to true, Variant1 is active. If the
Simulink.Variant V2 evaluates to true, Variant2 is active.

In R2016a, in the preprocessor_check_types.h file, the preprocessor conditionals
that checked for just one active variant per subsystem were

/* Exactly one variant for '<Root>/Variant Subsystem' should be active */

2-27

R2016b

#if (VC == 1) + (VC == 2) != 1

#error Exactly one variant for '<Root>/Variant Subsystem' should be active

#endif

/* Exactly one variant for '<Root>/Variant Subsystem1' should be active */

#if (V1) + (V2) != 1

#error Exactly one variant for '<Root>/Variant Subsystem1' should be active

#endif

#endif

According to the second sentence of Rule 12.6, VC==1 and VC==2 and V1 and V2 should
not be added together because they are effectively Boolean expressions.

In R2016b, in the preprocessor_check_types.h file, the preprocessor conditionals
that check for one active variant per subsystem are

/* Exactly one variant for '<Root>/Variant Subsystem' should be active */

#if ((VC == 1) ? 1 : 0) + ((VC == 2) ? 1 : 0) != 1

#error Exactly one variant for '<Root>/Variant Subsystem' should be active

#endif

/* Exactly one variant for '<Root>/Variant Subsystem1' should be active */

#if ((V1) ? 1 : 0) + ((V2) ? 1 : 0) != 1

#error Exactly one variant for '<Root>/Variant Subsystem1' should be active

#endif

#endif

The conditional checks contain ternary Boolean operators that do not violate MISRA
Rule 12.6. See MISRA C:2004 and MISRA AC AGC Coding Rules.

Use default installation folder on Windows system with ReFS file system

In previous releases, on Windows systems, the code generator relied on 8.3 name or short
file name generation to operate from the default installation folder (for example, C:
\Program Files\MATLAB\R2015b).

The Windows ReFS (Resilient File System) does not permit 8.3 name or short file name
generation. ReFS differs from Windows NTFS (New Technology File System), which–by
default–provides short file name support.

To support the default MATLAB installation folder on Windows systems with the ReFS
file system or when NTFS short file name support is disabled, the code generation
software maps a drive corresponding to the MATLAB installation folder.

2-28

http://www.mathworks.com/help/releases/R2016b/codeprover/ug/misra-c-coding-rules.html
https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS

 Code Generation

For more information, see Enable Build Process for Folder Names with Spaces.

2-29

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/enable-build-process-for-folder-names-with-spaces.html

R2016b

Deployment

Cortex-M7 Target Support Package: Generate code for STM32F746G-
Discovery Board

You can use the Embedded Coder Support Package for STMicroelectronics Discovery
Boards to generate code on the Cortex-M7 based STM32F746G-Discovery board.

To build your model for the STM32F746G-Discovery board, you can use the following
blocks from the support package library:

• Audio Input
• Audio Output
• Analog Input
• Digital Read
• Digital Write
• I2C Master Read
• I2C Master Write
• PWM Output
• SPI Master Transfer
• SPI Register Read
• SPI Register Write

For more information, see Embedded Coder Support Package for STMicroelectronics
Discovery Boards.

Added Embedded Coder Support Package for ARM Cortex-R Processors

You can use the Embedded Coder Support Package for ARM Cortex-R Processors to:

• Run executables with FreeRTOS on a Texas Instruments Hercules RM57Lx
Launchpad, which uses a lockstep cached 330Mhz ARM Cortex-R5F based RM series
MCU.

• Tune parameters on, and monitor data from, an executable running on the Texas
Instruments Hercules RM57Lx Launchpad (External mode).

2-30

http://www.mathworks.com/help/releases/R2016b/supportpkg/stmicroelectronicsstm32f4discovery/index.html
http://www.mathworks.com/help/releases/R2016b/supportpkg/stmicroelectronicsstm32f4discovery/index.html
http://www.ti.com/tool/launchxl2-rm57l
http://www.ti.com/tool/launchxl2-rm57l

 Deployment

• Verify numeric accuracy and profile execution times using processor-in-the-loop (PIL)
on the Texas Instruments Hercules RM57Lx Launchpad.

• Profile task and function execution times of executables running in real time on the
Texas Instruments Hercules RM57Lx Launchpad.

To download and install this feature, perform the steps described in http://
www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-
for-arm-cortex-a-processors.html.

For more information, see http://www.mathworks.com/help/releases/R2016b/supportpkg/
armcortexr/index.html.

Improved External mode over serial communication

The external mode in Embedded Coder Support Package for Texas Instruments C2000™
Processors feature is now improved with a faster serial communication protocol. The new
protocol reduces data drop during data logging. With this change, increasing the baud
rate also increases the data logging performance.

New blocks added to TI’s C2000 support package

You can use eCAP, eQEP, CLA, and DAC blocks on TI’s C2000™ F2837xS, F2837xD, and
F2807x processors.

Use the eCAP block to capture input pin transitions or configure auxiliary pulse width
modulator.

Use the eQEP block to interface with a linear or rotary incremental encoder.

Use CLA Trigger block to run code on Control Law Accelerator (CLA) co-processor
available on F2803x, F2806x, F2837xS, F2837xD, and F2807x processors.

Use the DAC block to convert digital data to analog signal.

Change in name and the base product for the FRDM-K64F and the FRDM-
KL25Z support packages

The base product for FRDM-K64F and FRDM-KL25Z support packages is changed
from Embedded Coder to Simulink Coder. The two support package are now named as

2-31

http://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/index.html
http://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/index.html

R2016b

Simulink Coder Support Package for NXP™ FRDM-K64F Board and Simulink Coder
Support Package for NXP FRDM-KL25Z Board respectively. For more information, see
Simulink Coder Target Support Packages: Generate code for NXP Freedom boards and
STMicroelectronics Nucleo boards.

Support for TI's C5000 DSPs has been removed

Embedded Coder support for TI's C5000 has been removed in R2016b. However, you can
still generate code using Embedded Coder® by selecting TI's C5000 as the device vendor
on the Hardware Implementation pane for ANSI-C. You can also create your own target
optimizations using code replacement libraries. For more information, see Optimize
Generated Code By Developing and Using Code Replacement Libraries - Simulink®.

Support for TI’s C6000 has been removed

Embedded Coder support for TI C6000™ has been removed in R2016b. However, you can
still generate code using Embedded Coder by selecting TI’s C6000™ as the device vendor
on the Hardware Implementation pane for ANSI-C. You can also create your own target
optimizations using code replacement libraries. For more information, see Optimize
Generated Code By Developing and Using Code Replacement Libraries - Simulink®.

Support for Wind River VxWorks RTOS will be removed

Embedded Coder support for Wind River VxWorks RTOS will be removed in a future
release. You will still be able to use Embedded Coder for Wind River VxWorks RTOS,
but will need to manually integrate the generated code with hand written scheduler and
drivers.

Support for idelink_ert.tlc will be removed

Support for idelink_ert.tlc will be removed in R2017a. C2000 processors will be supported
only on ert.tlc workflow.

2-32

http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvc7hgs
http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvc7hgs
http://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
http://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
http://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
http://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html

 Performance

Performance

Data Reuse and Memory Reduction: Reuse global data for nonreusable
subsystems and reduce data copies with user-specified buffers

Buffer reuse across nonreusable subsystems

In R2016b, for a model containing multiple nonreusable subsystems, the code generator
can reuse a single global buffer. In the subsystem block parameters dialog box, on
the Code Generation tab, a nonreusable subsystem has the Function packaging
parameter set to Nonreusable function. The Function interface parameter is set
to void_void. This optimization decreases data copies and memory consumption and
increases code execution speed.

For example, the model rtwdemo_automatic_global_reuse contains four
nonreusable subsystems. The inputs to each subsystem are arrays of size 256.

In R2016a, the rtwdemo_automatic_global_reuse.h file contained this code:

2-33

R2016b

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 DW_LowpassFilter LowpassFilter_pn; /* '<S4>/Lowpass Filter' */

 DW_LowpassFilter LowpassFilter_p; /* '<S3>/Lowpass Filter' */

 DW_HighpassFilter HighpassFilter_pn; /* '<S2>/Highpass Filter' */

 DW_HighpassFilter HighpassFilter_p; /* '<S1>/Highpass Filter' */

 real_T Switch[256]; /* '<S4>/Switch' */

 real_T Switch_i[256]; /* '<S3>/Switch' */

 real_T Switch_k[256]; /* '<S2>/Switch' */

 real_T Switch_f[256]; /* '<S1>/Switch' */

} DW;

For each nonreusable subsystem, the global structure DW contained an array. The array
names were Switch, Switch_i, Switch_k, and Switch_f.

In R2016b, the rtwdemo_automatic_global_reuse.h file contains this code:

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 DW_LowpassFilter LowpassFilter_pn; /* '<S4>/Lowpass Filter' */

 DW_LowpassFilter LowpassFilter_p; /* '<S3>/Lowpass Filter' */

 DW_HighpassFilter HighpassFilter_pn; /* '<S2>/Highpass Filter' */

 DW_HighpassFilter HighpassFilter_p; /* '<S1>/Highpass Filter' */

 real_T Switch[256]; /* '<S1>/Switch' */

} DW;

The global structure DW contains one array Switch for buffer reuse. Each nonreusable
subsystem uses this array.

Buffer reuse for multiple signals in a path

For blocks and subsystems that form a path, if the input and output signals to these
blocks and subsystems have the same reusable storage class specification, the code
generator tries to reuse the signals in the generated code. This optimization decreases
data copies and memory consumption and increases code execution speed.

For user-specified buffer reuse, blocks that modify a signal specified for reuse must
execute before blocks that use the original signal value. In R2016a, sometimes the code
generator changed the block operation order so that buffer reuse occurred.

In R2016b, the code generator performs better reordering of block operations, so that
more instances of user-specified buffer reuse can occur. For example, in the model
rtwdemo_reusable_csc_scheduling, the Simulink.Signal reuse is for buffer
reuse. The four subsystems have nonreusable function packaging.

2-34

 Performance

In R2016a, the rtwdemo_reusable_csc_scheduling.c file contained this code.

real_T reuse_1[256];

real_T reuse_0[256];

real_T reuse[256];

…

void rtwdemo_reusable_csc_scheduling_step(void)

{

 real_T rtb_MinMax_d[256];

 f(rtU.SigIn, reuse_1);

 LPSub();

 HPSub();

 MaxSub1(reuse_1, 0.0, rtb_MinMax_d);

 MaxSub2(reuse_0, rtb_MinMax_d, rtY.SigOut1);

}

For the Simulink.Signal reuse, there were three global variables: reuse, reuse_0,
and reuse_1. The generated code could not use the same global variable in the four
functions. LPSub and HPSub modified the signal value before MaxSub1 and MaxSub2
used it, and MaxSub1 and MaxSub2 had to use the original signal value.

In R2016b, the rtwdemo_reusable_csc_scheduling.c file contains this code:

real_T reuse[256];

2-35

R2016b

…

void rtwdemo_reusable_csc_scheduling_step(void)

{

 f(rtU.SigIn, (&(reuse[0])));

 MaxSub1();

 LPSub();

 MaxSub2();

 HPSub();

}

For the Simulink.Signal reuse, there is one global variable reuse. The code
generator can reuse this variable because calls to functions MaxSub1 and MaxSub2
happen before calls to functions LPSub and HPSub, respectively.

For more information, see Specify Buffer Reuse for Multiple Signals in a Path.

Code Optimizations: Generate more efficient code with select-assign-
iterator pattern and matrix padding operations

In R2016b, for iterative select assignment modeling patterns and matrix padding
operations, there are buffer reductions in the generated code. This optimization reduces
memory usage and increases code execution speed. Iterative select-assignment modeling
patterns and matrix padding operations are useful in image processing.

Data copy reduction for select-assign-iterator modeling pattern

In R2016a, for a model that iteratively selects values from an input signal and assigns
them to an output signal, there was an extra buffer in the generated code. In R2016b, the
code generator eliminates this buffer.

For example, the rtwdemo_optimize_nestedloops model contains two select-
assignment modeling patterns. One pattern is in the subsystem MyFilter. The other
pattern is in the subsystem ALGORITHM, which is nested in MyFilter. Both subsystems
contain a for Iterator block, a Selector block, and an Assignment block.

2-36

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

 Performance

In R2016a, the code generator produced this code.

2-37

R2016b

void rtwdemo_optimize_nestedloops_step(void)

{

 int32_T s1_iter;

 real_T rtb_Selector[500];

 int32_T s2_iter;

 for (s1_iter = 0; s1_iter < 250; s1_iter++) {

 for (s2_iter = 0; s2_iter < 250; s2_iter++) {

 rtb_Selector[s2_iter << 1] = rtwdemo_optimize_nestedloops_U.In1[250 *

 s2_iter + s1_iter];

 rtb_Selector[1 + (s2_iter << 1)] = rtwdemo_optimize_nestedloops_U.In1[250 *

 s2_iter + s1_iter];

 rtwdemo_optimize_nestedloops_Y.Out1[s1_iter + 250 * s2_iter] =

 rtb_Selector[(s2_iter << 1) + 1] * 5.0 + rtb_Selector[s2_iter << 1] *

 5.0;

 }

 }

}

The generated code contains the buffer rtb_Selector[500].

In R2016b, the code generator produces this code.

void rtwdemo_optimize_nestedloops_step(void)

{

 int32_T s1_iter;

 int32_T s2_iter;

 for (s1_iter = 0; s1_iter < 250; s1_iter++) {

 for (s2_iter = 0; s2_iter < 250; s2_iter++) {

 rtwdemo_optimize_nestedloops_Y.Out1[s1_iter + 250 * s2_iter] =

 rtwdemo_optimize_nestedloops_U.In1[250 * s2_iter + s1_iter] * 5.0 +

 rtwdemo_optimize_nestedloops_U.In1[250 * s2_iter + s1_iter] * 5.0;

 }

 }

}

The generated code does not contain the rtb_Selector[500] buffer or the associated
data copies.

Data copy reduction for matrix padding operations

In R2016a, for a model that uses Matrix Concatenate blocks to add rows and columns
to a multidimensional input signal, there was an extra buffer in the generated code. In
R2016b, the code generator eliminates this buffer.

2-38

 Performance

For example, in the model pattern_grow_matrix, the Vertical Matrix
Concatenate block adds a row of 250 zeros and the Horizontal Matrix
Concatenate blocks adds a column of 250 zeros to a multidimensional input signal.

In R2016a, the code generator produced this code.

/* Model step function */

void pattern_grow_matrix_step(void)

{

 int32_T i;

 /* SignalConversion: '<Root>/ConcatBufferAtHorizontal Matrix ConcatenateIn1' */

 memset(&Y.Out1[0], 0, 251U * sizeof(real32_T));

 /* Concatenate: '<Root>/Vertical Matrix Concatenate' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 250; i++) {

 B.fv0[251 * i] = 0.0F;

 }

 for (i = 0; i < 250; i++) {

 memcpy(&B.fv0[i * 251 + 1], &U.In1[i * 250], 250U * sizeof(real32_T));

 }

 memcpy(&Y.Out1[251], &B.fv0[0], 62750U * sizeof(real32_T));

 /* End of Concatenate: '<Root>/Vertical Matrix Concatenate' */

}

2-39

R2016b

The code contained the buffer B.fv0.

In R2016b, the code generator produces this code.

/* Model step function */

void pattern_grow_matrix_step(void)

{

 int32_T i;

 /* SignalConversion: '<Root>/ConcatBufferAtHorizontal Matrix ConcatenateIn1' */

 memset(&Y.Out1[0], 0, 251U * sizeof(real32_T));

 /* Concatenate: '<Root>/Vertical Matrix Concatenate' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Roo>/In1'

 */

 for (i = 0; i < 250; i++) {

 Y.Out1[i * 251 + 251] = 0.0F;

 }

 for (i = 0; i < 250; i++) {

 memcpy(&Y.Out1[i * 251 + 252], &U.In1[i * 250], 250U * sizeof(real32_T));

 }

 /* End of Concatenate: '<Root>/Vertical Matrix Concatenate' */

}

The buffer, B.fv0, and the extra memcpy to B.fv0 are not in the generated code.

Display of code execution times for model component

R2016b provides improved viewing and analysis of code execution-time measurements
that software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations produce. For
example, at the end of a top-model SIL or PIL simulation, you can view execution-time
metrics in a display window:

• For execution-time metrics from the top-level tasks, click the blue Simulink Editor
background.

• For execution-time metrics from a profiled block, click the blue block.

2-40

 Performance

The display window also provides access to:

• The complete profiling report, which provides execution-time metrics for profiled code
sections.

• The profiled code section in the code generation report.
• The Simulation Data Inspector, which enables you to plot and compare execution-time

measurements for the profiled code section.

For more information, see View and Compare Code Execution Times.

More efficient code for array element assignments

In R2016a, for a model that contained a Product block that performed matrix
multiplication, the code generator assigned values to the product matrix one column at a
time. In the generated code, the array element assignments occurred out of order.

2-41

http://www.mathworks.com/help/releases/R2016b/ecoder/ug/view-and-compare-code-execution-times.html

R2016b

In R2016b, the code generator performs a loop exchange, so that these assignments
occur one row at time. During a loop exchange, the code generator switches the order
of iteration variables. In the generated code, the array element assignments occur in
contiguous order.

When array element assignments occur in contiguous order, the CPU stores and accesses
data in continuous memory. This optimization increases code execution speed because it
improves cache efficiency.

For example, in the matrix_multiply model, the Product block processes the input
vectors as matrices.

In R2016a, the code generator produced this code.

 /* Product: '<Root>/Product' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */

 for (i = 0; i < 5; i++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 matrix_multiply_B.Product3[i + 5 * i_0] = 0.0;

 for (i_1 = 0; i_1 < 5; i_1++) {

 matrix_multiply_B.Product3[i + 5 * i_0] += tmp_1[5 * i_1 + i] * tmp_2[5 *

 i_0 + i_1];

 }

 }

 }

 /* End of Product: '<Root>/Product' */

2-42

 Performance

In the matrix_multiply_step function, element assignments to the array
matrix_multiply.Product3 occur in intervals of 5 (that is, one column at a time).

In R2016b, the code generator produces this code.

 /* Product: '<Root>/Product' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */

 for (i_0 = 0; i_0 < 5; i_0++) {

 for (i = 0; i < 5; i++) {

 matrix_multiply_B.Product3[i + 5 * i_0] = 0.0;

 for (i_1 = 0; i_1 < 5; i_1++) {

 matrix_multiply_B.Product3[i + 5 * i_0] += tmp_1[5 * i_1 + i] * tmp_2[5 *

 i_0 + i_1];

 }

 }

 }

 /* End of Product: '<Root>/Product' */

In the matrix_multiply_step function, element assignments to the array
matrix_multiply_B.Product3 occur in contiguous order (that is, one row at a time).
The assignments occur in contiguous order because the code generator interchanges the
iteration variables i_0 and i. In R2016a, i_0 is the iteration variable for the inner for
loop, and i is the iteration variable for the outer for loop. In R2016b, i_0 is the iteration
variable for the outer for loop, and i is the iteration variable for the inner for loop.

Loop fusion for nested for loops

In R2016a, for a model that used a Concatenate block to concatenate input signals into
a continuous multidimensional signal, the generated code contained separate nested
for loops for each signal. In R2016b, the code generator combines these for loops. This
optimization conserves ROM consumption and increases code execution speed.

For example, in the model loop_fusion, the Vertical Matrix Concatenate block
concatenates three signals that each have dimensions 3x4 into one signal with
dimensions 9x4.

2-43

R2016b

In R2016a, the code generator produced this code.

void loop_fusion_step(void)

{

 int32_T i;

 int32_T i_0;

 for (i = 0; i < 4; i++) {

 for (i_0 = 0; i_0 < 3; i_0++) {

 loop_fusion_Y.Out1[i_0 + 9 * i] = loop_fusion_U.In1[3 * i + i_0];

 }

 }

 for (i = 0; i < 4; i++) {

 for (i_0 = 0; i_0 < 3; i_0++) {

 loop_fusion_Y.Out1[(i_0 + 9 * i) + 3] = loop_fusion_U.In1[3 * i + i_0];

 }

 }

 for (i = 0; i < 4; i++) {

 for (i_0 = 0; i_0 < 3; i_0++) {

 loop_fusion_Y.Out1[(i_0 + 9 * i) + 6] = loop_fusion_U.In1[3 * i + i_0];

 }

 }

}

There are three nested for loops.

In R2016b, the code generator produces this code.

void loop_fusion_step(void)

2-44

 Performance

{

 int32_T i;

 int32_T i_0;

 for (i_0 = 0; i_0 < 4; i_0++) {

 for (i = 0; i < 3; i++) {

 loop_fusion_Y.Out1[i + 9 * i_0] = loop_fusion_U.In1[3 * i_0 + i];

 loop_fusion_Y.Out1[(i + 9 * i_0) + 3] = loop_fusion_U.In1[3 * i_0 + i];

 loop_fusion_Y.Out1[(i + 9 * i_0) + 6] = loop_fusion_U.In1[3 * i_0 + i];

 }

 }

}

There is one nested for loop.

More efficient initialization code for root-level inports

Loop fusion in model_initialize function

In R2016a, the code generator did not fuse for loops that initialized data for root-level
inports.

In R2016b, the code generator can fuse for loops that have the same upper bound value.

For example, in loopfusionex, for each Inport block, the Port dimensions parameter
is [50 47].

2-45

R2016b

In R2016a, in the loopfusionex_initialize function, the code generator produced
this code.

/* external inputs */

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

 loopfusionex_U.In1[i] = 0.0;

 }

 }

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

 loopfusionex_U.In2[i] = 0.0;

 }

 }

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

2-46

 Performance

 loopfusionex_U.In3[i] = 0.0;

 }

 }

For each Inport block, the generated code contained a separate for loop. The
code generator generated code that initialized root inports to zero because in the
Configuration Parameters dialog box, on the Optimization pane, the Remove root
level I/O zero initialization parameter is not selected.

In R2016b, the code generator produces this code.

 /* external inputs */

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

 loopfusionex_U.In1[i] = 0.0;

 loopfusionex_U.In2[i] = 0.0;

 loopfusionex_U.In3[i] = 0.0;

 }

 }

The generated code contains one for loop to initialize data for the three root-level
inports.

One iteration variable for multiple for loops

In R2016a, in the model_ initialize function, for for loops that initialized data for
root-level Inport blocks, there was an iteration variable for each for loop.

In R2016b, for for loops that initialize data for root-level Inport blocks, there is one
iteration variable for these for loops.

For example, in for_loop_iterator, for In1, In2, and In3, the Port dimension
parameter is [50 47], [20 10], and 20, respectively. In the Configuration Parameters
dialog box, on the Optimization pane, the Remove root level I/O zero initialization
parameter is not selected.

2-47

R2016b

In R2016a, in the for_loop_iterator_initialize function, the code generator
produced this code:

/* external inputs */

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

 for_loop_iterator_U.In1[i] = 0.0;

 }

 }

 {

 int32_T i;

 for (i = 0; i < 200; i++) {

 for_loop_iterator_U.In2[i] = 0.0;

 }

 }

 {

 int32_T i;

 for (i = 0; i < 20; i++) {

2-48

 Performance

 for_loop_iterator_U.In3[i] = 0.0;

 }

 }

The iteration variable i was declared three times—once for each for loop.

In R2016b, in the for_loop_iterator_initialize function, the code generator
produces this code:

/* external inputs */

 {

 int32_T i;

 for (i = 0; i < 2350; i++) {

 for_loop_iterator_U.In1[i] = 0.0;

 }

 for (i = 0; i < 200; i++) {

 for_loop_iterator_U.In2[i] = 0.0;

 }

 for (i = 0; i < 20; i++) {

 for_loop_iterator_U.In3[i] = 0.0;

 }

 }

The generated code declares the iteration variable, i, once.

More efficient code for Boolean expressions

In R2016b, for a model containing a Logic block with the Operator parameter set to
NXOR, the code generator removes an equality operator. Removing this operator makes
the generated code less complex and more efficient.

For example, the model nxor_example contains two Inport blocks that connect to a
Logic block. In the Inport block parameters dialog box, on the Signal Attributes tab, the
Data type parameter is set to Boolean.

2-49

R2016b

In R2016a, in the nxor_example_step function, the code generator produced this code:

void nxor_example_step(void)

{

 Y2 = !(U3 != U4);

}

The generated code contained two equality operators.

In R2016b, the code generator produces this code:

void nxor_example_step(void)

{

 Y2 = (U3 == U4);

}

The generated code contains one equality operator.

2-50

 Verification

Verification

Verification of size_t and ptrdiff_t hardware settings

In R2016b, the Configuration Parameters > Hardware Implementation pane
provides settings for the ANSI C data types size_t and ptrdiff_t. At the start of a
processor-in-the-loop (PIL) simulation, the software verifies the settings with reference to
the target hardware.

Verification of PIL target connectivity configuration

Through the piltest function, you can use a test suite to verify your custom processor-
in-the-loop (PIL) target connectivity configuration. Verify the target connectivity
configuration early and independently of your model development and code generation.

For more information, see Create PIL Target Connectivity Configuration.

Signal range checking in SIL and PIL simulations

Top-model and Model block software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations support the Configuration Parameters > Diagnostics > Data
Validity > Simulation range checking (SignalRangeChecking) diagnostic.
With this diagnostic, you can detect mismatches between model and generated code
simulations that arise when you specify the code optimization configuration parameter,
UseSpecifiedMinMax. The range checking applies to only root-level I/O signals of the
SIL or PIL component.

SIL and PIL block support for Simulink Function and Function Caller blocks

You can run simulations with SIL and PIL blocks that you create from subsystems
containing Simulink Function or Function Caller blocks. Function calls across the SIL or
PIL block boundary are not supported.

2-51

http://www.mathworks.com/help/releases/R2016b/ecoder/ref/piltest.html
http://www.mathworks.com/help/releases/R2016b/ecoder/ug/create-pil-target-connectivity-configuration.html
http://www.mathworks.com/help/releases/R2016b/simulink/gui/simulation-range-checking.html
http://www.mathworks.com/help/releases/R2016b/simulink/gui/optimize-using-the-specified-minimum-and-maximum-values.html

R2016b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

2-52

http://www.mathworks.com/support/bugreports/

R2016a
Version: 6.10

New Features

Bug Fixes

Compatibility Considerations

R2016a

Code Generation from MATLAB Code

Export data by using ExportedDefine storage class

In R2016a, when you generate C/C++ code from MATLAB code, you can use an
ExportedDefine storage class to declare global variables with #define directives. The
code generator emits these directives to the entryfcn.h header file. entryfcn.h is the
name of the first entry-point function.

To assign the ExportedDefine storage class to a global variable, in your MATLAB code,
use the coder.storageClass function. Only when you use an Embedded Coder project
or configuration object for generation of C/C++ libraries or executables does the code
generation software recognize coder.storageClass calls.

The syntax for coder.storageClass is:

coder.storageClass(var_name, storage_class)

var_name is the name of a global variable. Specify var_name as a constant
string. Specify storage_class as ‘ExportedDefine’. For example,
coder.StorageClass('g','ExportedDefine') assigns the ExportedDefine
storage class to the global variable g. To assign the ExportedDefine storage class to a
global variable, the global variable must be only read and not written to in the code.

SIL execution returns standard output and standard error streams

During a SIL execution, the SIL application redirects the stdout and stderr streams.
When the application terminates, the MATLAB Command Window now displays the
information from the redirected streams.

The SIL application also provides a basic signal handler, which captures the POSIX®

signals SIGFPE, SIGILL, SIGABRT, and SIGSEV. The SIL application includes the file
signal.h for the signal handler.

The information from the redirected streams can help you to debug SIL applications that
fail before the execution is complete. For example, you can view:

• Output from printf statements in your code.
• If you enable run-time error detection, messages sent to stderr.

3-2

http://www.mathworks.com/help/releases/R2016a/ecoder/ref/coder.storageclass.html

 Code Generation from MATLAB Code

• Some low-level system messages.

For more information, see Debug SIL Execution.

3-3

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-debugging-during-sil-execution.html

R2016a

Model Architecture and Design

Compile-Time Dimensions: Generate compiler directives (#define) for
implementing signal dimensions

Previously, Simulink treated signal and parameter dimension specifications as numeric
constants. In R2016a, you can use a Simulink.Parameter object as a symbol in a
MATLAB expression to represent a dimension value. During simulation, Simulink
propagates dimension symbols throughout the model and preserves these symbols in the
propagated signal dimensions.

For example, in the model sym_dim_ex, the Port Dimensions parameter of In1 is the
Simulink.Parameter D.

The sym_dim_ex.c file contains the following code:

for (i = 0; i < D; i++) {

 sym_dim_ex_Y.Out1[i] = 2.0 * sym_dim_ex_U.In1[i];

 }

In a header file, a macro defines the symbol D:

#define D 100

For the same model, if you change the value of D, the generated code remains the same
except for the definition of D:

#define D 200

When you use symbols instead of numeric constants for dimension specifications, you can
compile the same generated code into multiple applications of different sizes. When you
simulate the model, you validate the behavior of the generated code for a set of symbolic
dimension values. Change the values of the Simulink.Parameter objects that define
the dimension symbols and simulate the model with the new values to check that the
new values are valid.

3-4

 Model Architecture and Design

For more information on how to specify dimensions with Simulink.Parameters, see
Implement Dimension Variants for Array Sizes in Generated Code

The dimension variants feature is on by default. You can turn off this feature by clearing
the Allow symbolic dimension specification parameter on the All Parameters tab of the
Configuration Parameters dialog box.

Compile-Time Variants: Generate compiler directives (#if) for variant
choices specified with Variant Source and Variant Sink blocks

Previously, you used model variants and variant subsystems to make parts of a model
conditional. Preprocessor conditionals controlled which child subsystem of the variant
subsystem or which child model of the model variant was active in the generated code.

In R2016a, you can make parts of a model conditional without placing blocks inside
variant subsystems or model variants. A Variant Source block enables variant choices
at the source of a signal. For the Variant Source block, you can specify one or no
active input port. A Variant Sink block enables variant choices at the destination of a
signal. For the Variant Sink block, you can specify one or no active output port. During
simulation, Simulink ignores blocks that connect to inactive ports.

When you generate code, you can generate code for only the active variant choice
or generate preprocessor conditionals that defer the choice of active variant until
compilation time. You can generate preprocessor conditionals that allow for no active
variant choice. For more information, see Represent Variant Source and Sink Blocks in
Generated Code

C++ Code Generation: Use referenced models with multitasking, export-
functions, and virtual buses

Previously, code generation for the C++ model class interface was limited to single
tasking mode for model reference targets and non-virtual buses for crossing model
boundaries. Also, the Export Function feature could not generate code for the C++ model
class interface.

The C++ model class interface support in this release provides multitasking mode for
model reference target, provides virtual bus for crossing model boundaries, and supports
export function-call subsystems. For more information about using exported functions

3-5

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#Tag_ConfigSet_Debug_AllowSymbolicDim
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html

R2016a

with a C++ model class interface, see Export Function-Call Subsystems. For more
information about multitasking and virtual buses with C++ code generation, see “Default
style C++ interface replaces the void-void style C++ interface” on page 3-17.

MISRA C:2012 Compliance: Check block names and Assignment blocks
by using the Model Advisor

To improve MISRA C:2012 compliance, in the Model Advisor By Task > Modeling
Guidelines for MISRA C:2012 folder, you can run the following new checks.

Check Description Addresses
MISRA C:2012
Rule

Check for unsupported block
names

Identifies block names that contain a /
character.

3.1

Check usage of Assignment
blocks

Identifies Assignment blocks with
incomplete array initialization that do
not have block parameter Action if
any output element is not assigned
set to Error or Warning.

9.1

For information about MISRA C® versions and updates, see MISRA C Guidelines

AUTOSAR Round Trip: Automate model additions for update and merge
of ARXML files

Simulink provides the ability to merge AUTOSAR authoring tool changes into a model as
part of round-trip iterations. R2016a adds more automation and better reporting to the
merge process. The software:

• Automates Simulink block additions. In the updated model, green highlighting
identifies the added blocks.

• Lists required Simulink block deletions. In the updated model, red highlighting
identifies the blocks to delete.

For more information, see Import AUTOSAR Software Component Updates.

3-6

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/export-function-call-subsystems.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20qj1-1
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20qj1-1
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/developing-models-and-code-that-comply-with-misra-c-guidelines.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/merge-autosar-authoring-tool-changes-into-model.html

 Model Architecture and Design

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.2 or
later.

R2016a provides many other enhancements to Simulink modeling of AUTOSAR elements
and AUTOSAR code generation. For more information, see:

• Under Model Architecture and Design:

• “Variants in AUTOSAR component modeling” on page 3-7
• “AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive data access

mode” on page 3-9
• “AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets” on page

3-10
• “Programmatic validation and synchronization of AUTOSAR model

configurations” on page 3-10
• Under Code Generation:

• “AUTOSAR arxml round trip” on page 3-18
• “Improved AUTOSAR library support for Mfx functions” on page 3-20
• “AUTOSAR target no longer supports building wrapper subsystem as AUTOSAR

SW-Component” on page 3-21

Comment change in generated code

In R2016a, for models containing hierarchical model elements such as a conditionally
executed subsystem and either a reusable subsystem, a Stateflow Chart, or a model
reference, there is a comment change in the generated code.

In R2015b, for the code that sets the initial conditions of block states inside these
hierarchical model elements, the comment states Initial Conditions or
InitializeConditions.

In R2016a, the comment states System initialize or SystemInitialize.

Variants in AUTOSAR component modeling

R2016a enhances AUTOSAR component modeling with modeling support for:

3-7

R2016a

• AUTOSAR variants in ports and runnables
• AUTOSAR variants in array sizes

AUTOSAR variants in ports and runnables

AUTOSAR software components can use variants to enable or disable AUTOSAR
elements, such as ports and runnables, based on defined conditions. Embedded Coder
now supports modeling AUTOSAR variants in ports and runnables.

In Simulink, you can:

• Import AUTOSAR ports and runnables with variation points.

The arxml importer creates the required model elements, including workspace
variables for modeling with variants, Variant Sink blocks, and Variant Source blocks
to propagate variant conditions.

• Model AUTOSAR ports and runnables with variation points.

• To define variant condition logic, use Simulink.Variant data objects.
• To represent AUTOSAR system constants, use AUTOSAR.Parameter data objects

with storage class SystemConstant.
• To propagate variant conditions for the AUTOSAR elements, use Variant Sink and

Variant Source blocks.
• Run validation on the AUTOSAR configuration. The validation software checks that

variant conditions on Simulink blocks match the designed behavior from the imported
arxml code.

• Export previously imported AUTOSAR ports and runnables with variation points.

For more information, see Model AUTOSAR Variants and Configure AUTOSAR Variants
in Ports and Runnables.

AUTOSAR variants in array sizes

AUTOSAR software components can flexibly specify the dimensions of an AUTOSAR
element, such as a port, by using a symbolic reference to a system constant. The system
constant defines the array size of the port data type.

Embedded Coder now supports modeling AUTOSAR variants in array sizes.

In Simulink, you can:

3-8

http://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsink.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsource.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variants-in-ports-and-runnables.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variants-in-ports-and-runnables.html

 Model Architecture and Design

• Import AUTOSAR elements with variant array sizes.

• The arxml importer creates the required model elements, including
AUTOSAR.Parameter data objects with storage class SystemConstant, to
represent the array size values.

• Each block created by the importer to represent an AUTOSAR element with
variant array sizes references AUTOSAR.Parameter data objects to define its
dimensions.

• Model AUTOSAR elements with variant array sizes.

• Create blocks that represent AUTOSAR elements.
• To represent array size values, add AUTOSAR.Parameter data objects with

storage class SystemConstant.
• To specify array size for an AUTOSAR element, reference an

AUTOSAR.Parameter data object.
• Modify array size values in system constants and simulate the model, without

regenerating code for simulation.
• Generate C and arxml code with symbols corresponding to variant array sizes.

For more information, see Variants in Array Sizes and Configure AUTOSAR Variants in
Array Sizes.

AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive data
access mode

R2016a enhances AUTOSAR sender-receiver modeling with support for
DataReceivedEvents for receiver ports in ImplicitReceive data access mode.
Previously, the software supported DataReceivedEvents for receiver ports only in
ExplicitReceive, QueuedExplicitReceive, and EndToEndRead data access modes.

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.0 or
later.

3-9

http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html#bu7wh1j-1
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variant-dimensions.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variant-dimensions.html

R2016a

AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets

The arxml importer can now import AUTOSAR LiteralPrefixs defined in
IncludedDataTypeSets. The software adds LiteralPrefixs to Simulink enumerated
data types generated by the importer.

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.2 or
later.

Programmatic validation and synchronization of AUTOSAR model
configurations

R2016a adds MATLAB functions for validating and synchronizing AUTOSAR model
configurations:

• autosar.api.validateModel — Validate AUTOSAR properties and Simulink to
AUTOSAR mapping of specified model.

• autosar.api.syncModel — Synchronize Simulink to AUTOSAR mapping of specified
model with Simulink block modifications.

The functions are equivalent to using the Validate and Synchronize icons in
the graphical views of an AUTOSAR configuration.

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.1 or
later.

3-10

http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar.api.validatemodel.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar.api.syncmodel.html

 Data, Function, and File Definition

Data, Function, and File Definition

In/Out Arguments: Specify same variable name for in/out arguments of
MATLAB Function and Model blocks

Buffer reuse across Model blocks

Previously, the code generator tried to reuse buffers for a pair of model step function
input and output ports that were assigned the same argument name using function
prototype control. This optimization decreases RAM/ROM consumption because there are
less data copies and global variables in the generated code.

In R2016a, the code generator tries to reuse the input and output buffers of Model blocks.

For example, the model parent_model contains three copies of the model
child_model.

3-11

R2016a

In R2015b and R2016a, the code generator produces the following code in
child_model.cpp:

void bottommodel::step(real_T arg_Inout1[9], const real_T arg_In2[9])

{

 int32_T i;

 for (i = 0; i < 9; i++) {

 arg_Inout1[i] += arg_In2[i];

 }

}

The generated code uses the same buffer arg_Inout1 for the input In1 and the output
Out1.

In R2015b, the code generator produces this code in parent_model.cpp:

void topmodel::step()

{

 real_T rtb_Model[9];

 real_T rtb_Model1[9];

 real_T rtb_Model2[9];

 int32_T rtb_PulseGenerator1;

 real_T rtb_Add[9];

 real_T rtb_Add1[9];

 int32_T i;

 …

 for (i = 0; i < 9; i++) {

 rtb_Add[i] = parent_model_U.In1[i] + (real_T)rtb_PulseGenerator1;

 }

 …

 for (i = 0; i < 9; i++) {

 rtb_Add1[i] = parent_model_U.In2[i] + (real_T)rtb_PulseGenerator1;

 }

 (void) memcpy(&rtb_Model[0], &rtb_Add[0],

 9*sizeof(real_T));

 ModelMDLOBJ1.step(&rtb_Model[0], &rtb_Add1[0]);

 (void) memcpy(&rtb_Model1[0], &rtb_Model[0],

 9*sizeof(real_T));

 Model1MDLOBJ2.step(&rtb_Model1[0], &rtb_Add1[0]);

 (void) memcpy(&rtb_Model2[0], &rtb_Model1[0],

3-12

 Data, Function, and File Definition

 9*sizeof(real_T));

 Model2MDLOBJ3.step(&rtb_Model2[0], &rtb_Add1[0]);

 (void) memcpy(&parent_model_Y.Out1[0], &rtb_Model2[0],

 9*sizeof(real_T));

 Model3MDLOBJ4.step(&parent_model_Y.Out1[0], &rtb_Add1[0]);

}

The code generator does not reuse the output of one child model as the input to the next
child model. Instead, there is a full array data copy prior to each call to the model step
function.

In R2016a, the code generator produces the following code:

void topmodel::step()

{

 int32_T rtb_PulseGenerator1;

 real_T rtb_Model2[9];

 real_T rtb_Add1[9];

 int32_T i;

 for (i = 0; i < 9; i++) {

 rtb_Model2[i] = parent_model_U.In1[i] + (real_T)rtb_PulseGenerator1;

 }

 …

 for (i = 0; i < 9; i++) {

 rtb_Add1[i] = parent_model_U.In2[i] + (real_T)rtb_PulseGenerator1;

 }

 ModelMDLOBJ1.step(&rtb_Model2[0], &rtb_Add1[0]);

 Model1MDLOBJ2.step(&rtb_Model2[0], &rtb_Add1[0]);

 Model2MDLOBJ3.step(&rtb_Model2[0], &rtb_Add1[0]);

 memcpy(&parent_model_Y.Out1[0], &rtb_Model2[0], (uint32_T)(9U * sizeof(real_T)));

 Model3MDLOBJ4.step(&parent_model_Y.Out1[0], &rtb_Add1[0]);

}

The code generator reuses the output of each child model as the input to the next child
model. As a result, there are three less local arrays and four less full array data copies in
the generated code.

To configure model step function I/O arguments to allow buffer reuse, use either C
function prototype control or C++ class interface control. When generating C code, there
can be only one instance of the same Model Reference block in the parent model. When

3-13

R2016a

generating C++ code, the same Model Reference block can occur multiple times in the
parent model. For more information, see Combine I/O Arguments in Model Step Interface

Buffer reuse across MATLAB Function blocks

In R2016a, you can specify the same variable name for the input and output of a
MATLAB Function block. If you connect multiple MATLAB Function blocks with the
same variable name for the input and output arguments, the code generator tries to
reuse the output of one MATLAB Function block as the input to the next MATLAB
Function block. This optimization conserves RAM/ROM consumption by reducing the
number of local variables and data copies in the generated code.

For example, the model named mb_reuse contains four MATLAB Function blocks.

Each MATLAB Function block contains the following code:

function y = fcn(y)

y = y+4;

In R2016a, the code generator produces this code:

void mb_reuse_MATLABFunction1(real_T *rty_y)

{

 *rty_y += 4.0;

}

void mb_reuse_step(void)

{

 real_T rtb_y_p;

 rtb_y_p = (mb_reuse_DW.clockTickCounter < mb_reuse_P.PulseGenerator_Duty) &&

 (mb_reuse_DW.clockTickCounter >= 0) ? mb_reuse_P.PulseGenerator_Amp : 0.0;

 if (mb_reuse_DW.clockTickCounter >= mb_reuse_P.PulseGenerator_Period - 1.0) {

 mb_reuse_DW.clockTickCounter = 0;

 } else {

 mb_reuse_DW.clockTickCounter++;

 }

 mb_reuse_MATLABFunction1(&rtb_y_p);

3-14

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/combine-io-arguments-in-model-step-interface.html

 Data, Function, and File Definition

 mb_reuse_MATLABFunction1(&rtb_y_p);

 mb_reuse_MATLABFunction1(&rtb_y_p);

 mb_reuse_Y.Out1 = rtb_y_p;

 mb_reuse_MATLABFunction1(&mb_reuse_Y.Out1);

}

The code generator reuses the variable rtb_y_p for the input and output arguments of
each MATLAB Function block.

On the Code Generation tab in the subsystem Block Parameters dialog box, if
Function packaging is set to Nonreusable function and Function interface is set
to Allows arguments, the code generator cannot reuse the input and output buffers.

Custom Storage Class Type AccessFunction

In R2016a, you can use the Custom Storage Class Designer to create custom storage
classes of the new type AccessFunction. These custom storage classes access data in
the generated code through functions whose custom definitions you provide. The built-in
custom storage class GetSet from the package Simulink now uses this type.

You can configure these attributes as instance-specific or as common to all data items
that use the custom storage class:

• For your get and set functions, a naming scheme that uses the name of each data
item

• The name of the header file in which you provide the function prototypes

When you copy the +SimulinkDemos package to create your own data class package,
you can modify the definition of the custom storage class GetSet by using the Custom
Storage Class Designer.

For more information about the built-in custom storage class GetSet, see Access Data
Through Functions with Custom Storage Class GetSet. To create custom storage classes,
see Design Custom Storage Classes and Memory Sections.

Creation of custom storage classes for macros defined by compiler
options

Previously, the built-in custom storage class CompilerFlag used the type Other. In
R2016a, CompilerFlag uses the type Unstructured and represents an imported macro
that does not require a header file.

3-15

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html

R2016a

To import macros that you define by configuring compiler options, you can use
CompilerFlag or create your own custom storage class. In the Custom Storage Class
Designer:

• Set Data initialization to Macro.
• Set Data scope to Imported.
• Set Header file to Specify. Omit the header file name.

For more information, see Design Custom Storage Classes and Memory Sections.

Generation of ERT S-functions that represent variant controls as
preprocessor conditionals

Previously, when you generated an ERT S-function from a subsystem,
Simulink.Parameter objects that you selected as tunable appeared in the S-function
code as tunable global variables. You could change the values of these parameters in the
S-Function block dialog box during simulation.

In R2016a, if a Simulink.Parameter object uses a custom storage class that treats
the parameter as a macro in the generated code, you cannot select the parameter as a
tunable parameter for the generated S-function. Instead, the S-function code generator
applies the custom storage class to the parameter object. This generation of macros in
the S-function code allows you to generate S-functions from subsystems that contain
variant elements, such as Variant Subsystem blocks, that you configure to produce
preprocessor conditionals in the generated code. However, you cannot change the value of
the parameter during simulation of the S-function.

For more information about generating S-functions from subsystems, see Macro
Parameters.

Compatibility Considerations

If you apply macro custom storage classes to Simulink.Parameter objects, you can no
longer select the parameter objects as tunable parameters when you generate an ERT
S-function. To select these parameter objects as tunable parameters, apply a different
storage class or custom storage class.

3-16

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html
http://www.mathworks.com/help/releases/R2016a/rtw/ug/automated-s-function-generation.html#bu5ga6c
http://www.mathworks.com/help/releases/R2016a/rtw/ug/automated-s-function-generation.html#bu5ga6c

 Code Generation

Code Generation

Default style C++ interface replaces the void-void style C++ interface

In C++ class interface support, the Default step method replaces the Void-void step
method. The default style interface adds support for:

• Multitasking mode for model reference target
• Virtual bus for crossing model boundaries

When the Code Generation pane selection for System target file is ert.tlc (or is an
ERT-derived target), the Code Generation pane selection for Language is C++, and
the Code Generation > Interface pane selection for Code interface packaging is C
++ class, you click the Configure C++ Class Interface button to configure the step
method for your model.

For models configured to use the Void-void step method, the code generator treats this
replaced configuration as the Default step method. No incompatibility occurs for the
model configuration.

RTW.ModelCPPDefaultClass replaces RTW.ModelCPPVoidClass. Where code
uses the replaced RTW.ModelCPPVoidClass class, update the code to use the
RTW.ModelCPPDefaultClass, otherwise potential incompatibility can occur.

For information about the step methods, see Control Generation of C++ Class Interfaces.
For information about using an ERT-derived target with C++ support, see Support C++
Class Interface Control.

Compiler warning limitation removed for portable word sizes in SIL
simulations

Prior to R2016a, compilation warnings occurred for code generated by using portable
word sizes if all of the following conditions existed:

• The combination of word sizes for the host and target computers caused rtwtypes.h
to redefine the word sizes by using preprocessor macros. For example, when the target
computer had a 16-bit int data type and the host computer had a 16-bit short data
type, int16_T was redefined to be short on the host computer and int on the target

3-17

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html
http://www.mathworks.com/help/releases/R2016a/rtw/ug/supporting-optional-features.html#bru4p0f-1
http://www.mathworks.com/help/releases/R2016a/rtw/ug/supporting-optional-features.html#bru4p0f-1

R2016a

computer. The data types were used for pointer arguments to function calls. The
called functions resided on the host computer and were precompiled (not compiled
using rtwtypes.h).

• The data types were used in pointer arguments to function calls.
• The called functions resided on the host computer and were precompiled (not compiled

by using rtwtypes.h).

Under these conditions, the compiler typically issued a warning similar to the following
warning:

warning: passing argument 2 of 'frexp' from incompatible pointer type

Executing the generated code on the host computer led to memory corruption. For
example, the function double frexp (double value, int *exp); expected int
* as the second argument. However, int16_T * is passed in the generated code. On
the host computer, int16_T was redefined to short. During SIL simulation, frexp
attempted to write four bytes to a 2-byte location.

The suggested workaround for this limitation was to develop a custom code replacement
library for functions that wrote to address locations obtained through pointer arguments.

As of R2016a, this limitation does not apply. When you select portable word sizes, if
possible, the code generator handles unsized arguments for standard library functions
registered in libraries that MathWorks® provides. For unhandled cases, the code
generator reports an error.

If user-defined code replacements use arguments of word sizes that map to settings of
hardware implementation model configuration parameters, and you select portable word
sizes, the code generator issues a warning.

If you use portable word sizes, when possible, define the size of arguments.

For more information, see Configure Hardware Implementation Settings and Enable
portable word sizes.

AUTOSAR arxml round trip

R2016a enhances the AUTOSAR arxml round-trip workflow with support for:

• CompuMethods with LINEAR and TEXTTABLE COMPU-SCALEs

3-18

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br86vhn
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/enable-portable-word-sizes.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ref/enable-portable-word-sizes.html

 Code Generation

• PredefinedVariants import and export
• Enhanced control of AUTOSAR package path specification

CompuMethods with LINEAR and TEXTTABLE COMPU-SCALEs

In R2016a, you can import and export a CompuMethod that uses LINEAR and
TEXTTABLE scaling. Importing application data types that reference CompuMethods
of category SCALE_LINEAR_AND_TEXTTABLE creates Simulink.NumericType or
Simulink.AliasType data objects in the Simulink workspace. In Simulink, you can
modify the LINEAR scaling for the CompuMethods. The TEXTTABLE scaling is read-
only.

For more information, see CompuMethod Categories for Data Types and Modify Linear
Scaling for SCALE_LINEAR_AND_TEXTTABLE CompuMethod.

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.1 or
later.

PredefinedVariants import and export

For an AUTOSAR software component that contains variation points, to define the
values that control variation points, you can use the following AUTOSAR elements:

• SwSystemconst — Defines a system constant that serves as an input to control a
variation point.

• SwSystemconstantValueSet — Specifies a set of system constant values.
• PredefinedVariant — Describes a combination of system constant values,

among potentially multiple valid combinations, to apply to an AUTOSAR software
component.

Previously, when creating a model from arxml code, the arxml importer did not provide
a way to specify a PredefinedVariant or SwSystemconstantValueSets as a basis for
resolving variation points in the model.

In R2016a, you can resolve variation points in an AUTOSAR software component at
model creation time. Specify a PredefinedVariant or SwSystemconstantValueSets
with which the importer can initialize SwSystemconst data.

3-19

http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/data-types.html#bua1enf-1
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-compumethods.html#bu7wkgr-1
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-compumethods.html#bu7wkgr-1

R2016a

After model creation, you can run simulations and generate code based on the
combination of variation point input values that you specified.

For more information, see Model AUTOSAR Variants and Control AUTOSAR Variants
with Predefined Value Combinations.

Enhanced control of AUTOSAR package path specification

In R2016a, if you modify an AUTOSAR package path, and if packageable elements of
that category are affected, you can:

• Move the elements from the existing package to the new package.
• Set the new package path without moving the elements.

If you modify a package path in the Configure AUTOSAR Interface dialog box, and
if packageable elements of that category are affected, a dialog box opens with control
options. If you programmatically modify a package path, you can use the MoveElements
property to specify handling of affected elements.

For more information, see Control AUTOSAR Elements Affected by Package Path
Modifications.

Note: This capability is available to R2015b Embedded Coder customers by installing the
R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.0 or
later.

Improved AUTOSAR library support for Mfx functions

As of R2016a, the AUTOSAR 4.0 code replacement library (CRL) replaces abs,
saturate, min, and max function calls that involve operands with equal slope and bias
with calls to corresponding Mfx functions.

Calls To Replace

Mfx_Abs abs with operands that have equal slope
Mfx_Limit saturate with operands that have equal slope and bias
Mfx_Max max with operands that have equal slope and bias
Mfx_Min min with operands that have equal slope and bias

3-20

http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/control-autosar-variants-with-predefinedvariant-or-swsystemconstantvaluesets.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/control-autosar-variants-with-predefinedvariant-or-swsystemconstantvaluesets.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-packages.html#bu7wp5o-1
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-packages.html#bu7wp5o-1

 Code Generation

For more information about using the AUTOSAR 4.0 CRL, see Code Generation with
AUTOSAR Library.

AUTOSAR target no longer supports building wrapper subsystem as
AUTOSAR SW-Component

In R2016a, the AUTOSAR target removes support for using right-click builds to build a
wrapper subsystem that models an AUTOSAR SW-Component. In R2013b, a top model
approach to modeling multirunnable AUTOSAR SW-Components replaced the wrapper
subsystem approach. For more information, see Multi-Runnable Software Components
and Configure AUTOSAR Multiple Runnables.

Compatibility Considerations

In R2016a, if you try to configure and build an AUTOSAR SW-Component by using
a wrapper subsystem, the software issues an error message. The message states that
configuring a subsystem as an AUTOSAR SW-Component is not supported.

To convert subsystem multirunnables to top model multirunnables, use the subsystem-
to-model conversion techniques described in Convert a Subsystem to a Referenced Model.
After the basic conversion, you must manually reestablish some AUTOSAR configuration
information from the subsystem configuration in the new configuration.

Root model name in generated identifier for shared utility files

In R2016a, you can add the root model name to the generated identifier for shared utility
files. When you merge code for multiple models, including the root model name in the
generated identifier avoids name clashes. Name clashes arise due to identical shared
utility file names.

To specify that the code generator add the root model name, in the Configuration
Parameters dialog box, on the Code Generation > Symbols pane, add the $R token to
the Shared Utilities field.

Improved configuration parameter defaults for Embedded Coder targets

Improved configuration parameter defaults for Embedded Coder targets enable more
optimizations and traceability options. These parameter defaults make it easier to
develop your model for production code generation. In R2016a, when you switch your

3-21

http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/code-replacement-for-autosar.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/code-replacement-for-autosar.html
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar-software-components.html#buryr9d-1
http://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-multiple-runnables.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/convert-a-subsystem-to-a-referenced-model.html

R2016a

system target file to ert.tlc, the following configuration parameters are enabled by
default:

• Convert if-elseif-else patterns to switch-case statements
(ConvertIfToSwitch)

• Suppress generation of default cases for Stateflow switch statements if
unreachable (SuppressUnreachableDefaultCases)

• Simulink data object descriptions (SimulinkDataObjDesc)
• Simulink block descriptions (InsertBlockDesc)
• Verbose comments for SimulinkGlobal storage class

(ForceParamTrailComments)
• Open report automatically (LaunchReport)
• Create code generation report (GenerateReport)
• Stateflow object descriptions (SFDataObjDesc)
• Show eliminated blocks (ShowEliminatedStatement)
• Operator annotations (OperatorAnnotations)
• MATLAB function help text (MATLABFcnDesc)
• MATLAB source code as comments (MATLABSourceComments)
• Traceable Simulink blocks (GenerateTraceReportSl)
• Traceable Stateflow objects (GenerateTraceReportSf)
• Traceable MATLAB functions (GenerateTraceReportEml)
• Model-to-code (GenerateTraceInfo)
• Code-to-model (IncludeHyperlinkInReport)
• Eliminated / virtual blocks (GenerateTraceReport)

Streamlined code generation panes for easier model configuration

In the Configuration Parameters dialog box, streamlined category panes display only
configuration parameters that you are most likely to use when configuring your model for
code generation.

The category panes, previously referred to as the Category view, are now available on the
Commonly Used Parameters tab. The All Parameters tab, previously referred to as
the List view, provides the complete list of parameters in the model configuration set.

3-22

 Code Generation

Compatibility Considerations

Following are the configuration parameters that have moved to the All Parameters tab
or moved to a different pane.

Note: Parameters that are removed from a pane are still available for configuration on
the All Parameters tab. To locate a parameter on this tab, use either the search box or
the Category filter.

Code Generation Pane

The following are moved to the All Parameters tab:

• Ignore custom storage classes parameter
• Ignore test point signals parameter
• Validate button for Toolchain parameter

Code Generation > Interface Pane

The following parameters are moved to the All Parameters tab:

• Standard math library
• Support: non-inlined S-functions
• Multiword type definitions
• Maximum word length

3-23

R2016a

• Use dynamic memory allocation for model initialization
• Classic call interface
• Single output/update function
• Terminate function required
• Combine signal/state structures
• Internal data visibility
• Internal data access
• Generate destructor
• Use dynamic memory allocation for model block instantiation
• MAT-file logging
• MAT-file variable name modifier

Code Generation > Debug Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Profile TLC
• Verbose build
• Retain .rtw file
• Enable TLC assertion
• Start TLC coverage when generating code
• Start TLC debugger when generating code

Code Generation > Verification Pane

The following parameter is moved to the All Parameters tab:

• Create block

Data Import/Export Pane

The Enable live streaming of selected signal to Simulation Data Inspector
parameter is moved to the All Parameters tab.

The following parameters are available by clicking Additional Parameters at the
bottom of the pane:

• Limit data points to last

3-24

 Code Generation

• Decimation
• Output options
• Refine factor

Diagnostics Pane

The following parameter is moved to the All Parameters tab:

• Solver data inconsistency

Diagnostics > Data Validity Pane

The following parameters are moved to the All Parameters tab:

• Array bounds exceeded
• Model verification block enabling
• Check preactivation output of execution context
• Check runtime output of execution context
• Check undefined subsystem initial output
• Detect multiple driving blocks executing at the same time step
• Underspecified initialization detection

Diagnostics > Saving Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Block diagram contains disabled library links
• Block diagram contains parameterized library links

Diagnostics > Solver Pane

The following parameters are moved to the Diagnostics > Sample Time pane:

• Sample hit time adjusting
• Unspecified inheritability of sample time

The following parameter is moved to the Diagnostics > Compatibility pane:

• SimState object from earlier release

3-25

R2016a

Optimization Pane

The following parameters are moved to the All Parameters tab:

• Remove code from floating-point to integer conversions with saturation that
maps NaN to zero

• Compiler optimization level
• Verbose accelerator builds
• Implement logic signals as Boolean data (vs. double)
• Block reduction
• Conditional input branch execution
• Use memset to initialize floats and doubles to 0.0

Optimization > Signals and Parameters Pane

The following parameters are moved to the All Parameters tab:

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs
• Optimize global data access
• Reuse global block outputs
• Eliminate superfluous local variables (Expression folding)
• Simplify array indexing

Simulation Target Pane

The following parameters are moved to the All Parameters tab:

• Echo expressions without semicolons
• Simulation target build mode
• Ensure responsiveness
• Generate typedefs for imported bus and enumeration types
• Ensure memory integrity

Simulation Target > Custom Code Pane

The pane is removed and its parameters are moved to the Simulation Target pane:

3-26

 Code Generation

• Header file
• Initialize function
• Source file
• Terminate function
• Parse custom code symbols
• Include directories
• Libraries
• Source files
• Defines

Simulation Target > Symbols Pane

The pane is removed and its parameter is moved to the Simulation Target pane:

• Reserved names

Build button removed from Configuration Parameters dialog box

The Build / Generate Code button is no longer available on the Code Generation
pane in the Configuration Parameters dialog box.

Compatibility Considerations

To initiate code generation and the build process, press Ctrl-B or, on the Simulink Editor
toolbar, click the Build Model icon.

Improved web view for code generation report

In R2016a, significant updates improve the model Web view in the code generation
report. Updates include:

• Graphics and navigation similar to the Simulink Editor.

3-27

R2016a

• Block parameter and signal property value inspection using the Object Inspector
pane.

• Model search for locating Simulink blocks and Stateflow objects.
• Tab support for displaying individual block diagrams.

For more information, see the Simulink Report Generator™ documentation.

Dependent parameters not added to custom code generation objective

Previously, when you added a parameter to a custom code generation objective using
the addParam function, the software included the parameter dependencies in the list of
parameter values that the Code Generation Advisor reviews. In R2016a, these dependent
parameters are not added.

Removal of leading underscore character in macro type definitions

In R2015b, generated type definition macros began with an underscore character (_). In
R2016a, the code generator does not include the underscore character at the beginning of
these macros. This change in the generated code addresses MISRA C:2012 Rule 21.1.

For example, in R2015b, the code generator produced this code for an enumeration type
definition:

#ifndef _DEFINED_TYPEDEF_FOR_EnumErrorType_

#define _DEFINED_TYPEDEF_FOR_EnumErrorType_

typedef enum {

 NoError = 0, /* Default value */

 MeasuredVelocityError

} EnumErrorType;

#endif

The code contained an underscore character at the beginning of the name
_DEFINED_TYPEDEF_FOR_EnumErrorType_.

In R2016a, the code generator produces this code for the same type definition:

#ifndef DEFINED_TYPEDEF_FOR_EnumErrorType_

#define DEFINED_TYPEDEF_FOR_EnumErrorType_

3-28

http://www.mathworks.com/help/releases/R2016a/ecoder/ref/rtw.codegenobjectives.objective.addparam.html

 Code Generation

typedef enum {

 NoError = 0, /* Default value */

 MeasuredVelocityError

} EnumErrorType;

#endif

The code does not contain an underscore character at the beginning of the name
DEFINED_TYPEDEF_FOR_EnumErrorType_.

3-29

R2016a

Deployment

Hardware implementation parameters enabled by default

In R2016a, the Enable hardware specification button is removed from the
Configuration Parameters > Hardware Implementation pane. By default, the
parameters on the pane are enabled.

MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized
code with Altera SoC and Xilinx Zynq hardware

In R2016a, you can use processor-in-the-loop (PIL) executions to verify generated code
that you deploy to target hardware using a MATLAB Coder workflow with an Embedded
Coder license. By using PIL with hardware, you can more effectively generate customized
code for your hardware by profiling speed and algorithm performance. You have the
option of using the command-line workflow or the MATLAB Coder app to configure your
target hardware for PIL executions.

This PIL execution is available with the following hardware support packages:

• Embedded Coder Support Package for Altera SoC Platform
• Embedded Coder Support Package for Xilinx Zynq-7000 Platform

To use this PIL execution, you must install one of these support packages. For more
information, see:

• PIL Execution with ARM Cortex-A at the Command Line
• PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

Updates to support package for Texas Instruments C2000 processors

The updated Embedded Coder Support Package for Texas Instruments C2000™
Processors, adds the code generation support for Texas Instruments Delfino F2837xD,
F2837xS and Texas Instruments Piccolo F2807x processors. You must install the
Embedded Coder Support Package for Texas Instruments C2000 Processors to use this
support.

To install or update this support package, perform the steps described in Install Support
for TI’s C2000 Processors.

3-30

http://www.mathworks.com/help/releases/R2016a/supportpkg/alterasocembeddedcoder/index.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/xilinxzynq7000ec/index.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-from-command-line.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-using-the-matlab-coder-app.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/ug/install-support-for-c2000-processors.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/ug/install-support-for-c2000-processors.html

 Deployment

For more information, see Texas Instruments C2000 Processors.

Support package for Freescale FRDM-K64F board

You can use the Embedded Coder Support Package for Freescale™ FRDM-K64F Board to
generate, build, and deploy code to the Freescale FRDM-K64F board. See Install Support
for Freescale FRDM-K64F Board. For more information, see Embedded Coder Support
Package for Freescale FRDMK64F Board.

Support for TI’s C5000 DSPs will be removed

Support for TI’s C5000™ DSPs will be removed. You can still use Embedded Coder for
TI’s C5000 processors, but need to manually integrate the generated code with hand
written schedulers and drivers.

Support for TI’s C6000 DSPs will be removed

Support for TI’s C6000 DSPs will be removed in a future release. You will still be able to
use Embedded Coder for TI’s C6000 processors, but will need to manually integrate the
generated code with hand written schedulers and drivers.

Change in base product for ARM Cortex-Based VEX Microcontroller
support package

The base product for ARM Cortex-Based VEX Microcontroller support package is
changed from Embedded Coder to Simulink Coder. However, you can use this support
package with Embedded Coder to use some of the Embedded Coder features. For
more information on Simulink Coder Support Package for ARM Cortex-based VEX®

Microcontroller, see Simulink Coder Support Package for ARM Cortex-Based VEX
Microcontroller.

3-31

http://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/index.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/ug/intro.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/ug/intro.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/index.html
http://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/index.html
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu9rpp8
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu9rpp8

R2016a

Performance

Data Buffer Reuse: Use same variable for multiple signals in a path by
using the same Reusable storage class specification

Previously, if the input and output signals at a block or subsystem boundary shared the
same Reusable storage class specification, the code generator tried to reuse the signals
in the generated code.

In R2016a, this optimization extends to blocks or subsystems that are in a path. The
optimization decreases RAM/ROM consumption by reducing the number of global
variables and data copies in the generated code.

For more information, see Buffer Reuse Around a Block or Subsystem Boundary.

Reuse input, output, and state of Delay block

Previously, the code generator reused the input, output, and state of a Unit Delay block.
In R2016a, the code generator tries to reuse the input, output, and state of a Delay block
if in the Delay block parameters dialog box, the following conditions exist:

• The Delay length parameter has a value of 1.
• The Initial condition > Source parameter is set to Dialog.

For more information, see Buffer Reuse for Model Block Boundary and Unit Delay.

Initialization code occurs once after start code in model_initialize
function

In R2016a, for conditionally executed subsystems, there are the following changes in the
generated code for the model_initialize function:

• In R2015b, the code generator called the model_Subsystem_Init function possibly
before and after the model_Subsystem_Start function. In R2016a, the generated
code contains one call to the model_Subsystem_Init function. This call occurs after
the model_Subsystem_Start function. One call reduces code size and improves
ROM consumption.

3-32

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/buffer-reuse-at-block-or-subsystem-boundary.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

 Performance

• In R2015b, the model_Subsystem_Start function and the
model_Subsystem_Init function initialized the states of blocks. In R2016a,
the model_Subsystem_Init function initializes the states of blocks. The
model_Subsystem_Start function still performs other tasks involving a small
selection of blocks.

For example, in the model cond_sub, a Mux block combines the signals from two
enabled subsystems into one signal. This signal feeds into a function-call subsystem. One
of the outputs from the function-call subsystem is the combination of signals from two
subsystems. The other output is the signal from the Unit Delay block.

3-33

R2016a

In R2015b, the code generator produced this code in the cond_sub.c file:

void cond_sub_IASS1_Init(void)

{

 cond_sub_DW.UD_DSTATE_c = 0.0;

}

void cond_sub_IASS1_Start(void)

{

 cond_sub_IASS1_Init();

}

…

void cond_sub_FCSS_Init(void)

{

 cond_sub_DW.UD_DSTATE = 2.0;

}

…

3-34

 Performance

void cond_sub_FCSS_Start(void)

{

 cond_sub_DW.If_ActiveSubsystem = -1;

 cond_sub_IASS1_Start();

 cond_sub_B.M = 3.0;

 cond_sub_Y.O1 = 4.0;

}

void cond_sub_initialize(void)

{

 (void) memset((void *)&cond_sub_U, 0,

 sizeof(ExtU_cond_sub_T));

 (void) memset((void *)&cond_sub_Y, 0,

 sizeof(ExtY_cond_sub_T));

 cond_sub_FCSS_Init();

 cond_sub_FCSS_Start();

 cond_sub_FCSS_Init();

}

The cond_sub_initialize function calls the cond_sub_FCSS_Init function before
and after the cond_subFCSS_Start function. The cond_sub_FCSS_Init function sets
the initial condition of the Unit Delay block. The cond_sub_FCSS_Start function sets
the initial conditions of the Merge block and the Outport block, O1.

In R2016a, the code generator produces this code in the cond_sub.c file:

void cond_sub_FCSS_Init(void)

{

 cond_sub_DW.UD_DSTATE = 2.0;

 cond_sub_B.M = 3.0;

 cond_sub_Y.O1 = 4.0;

}

…

void cond_sub_FCSS_Start(void)

{

 cond_sub_DW.If_ActiveSubsystem = -1;

}

…

void cond_sub_initialize(void)

{

 (void) memset((void *)&cond_sub_U, 0,

 sizeof(ExtU_cond_sub_T));

 (void) memset((void *)&cond_sub_Y, 0,

 sizeof(ExtY_cond_sub_T));

3-35

R2016a

 cond_sub_FCSS_Start();

 cond_sub_FCSS_Init();

}

In R2016a, the cond_sub_FCSS_Start function occurs once before the
cond_sub_FCSS_Init function. The cond_sub_FCSS_Init function sets the initial
condition of the Merge block, the Outport block, O1, and the Unit Delay block. The
cond_sub_FCSS_Start function does not set the initial conditions of blocks.

Reset function improves initialization code optimization

In R2016a, for models containing a conditionally executed subsystem and a reusable
subsystem or model reference, the initialization code contains a new function called
model_Reset or subsystem_Reset. The model_Reset or subsystem_Reset function
sets the states of blocks inside a subsystem or model reference back to their initial
conditions. The subsystem_Init function sets the states of blocks inside a model
reference or subsystem to their initial conditions for the first time.

In the Configuration Parameters dialog box, when you select Optimization > Remove
internal data zero initialization, the code generator does not generate code that
initializes internal work structures to zero. This optimization reduces code size and
increases execution speed.

For example, in the cond_sub model (shown in this release note: “Initialization code
occurs once after start code in model_initialize function” on page 3-32), the
function-call subsystem contains two Unit Delay blocks. One Unit Delay block connects
to the output, o2 and has an initial condition of 2. The other Unit Delay block is inside
the subsystem IASS1 and has an initial condition of 0.

In R2015b, the code generator produced the following code in the cond_sub.c file:

void cond_sub_IASS1_Init(void)

{

 /* InitializeConditions for UnitDelay: '<S4>/UD' */

 cond_sub_DW.UD_DSTATE_c = 0.0;

}

…

void cond_sub_FCSS_Init(void)

{

 /* InitializeConditions for UnitDelay: '<S1>/UD' */

 cond_sub_DW.UD_DSTATE = 2.0;

}

3-36

 Performance

In R2015b, the code generator creates the cond_sub_FCSS_Init and the
cond_sub_IASS1_init functions to initialize and reset the state of each Unit Delay
block.

In R2016a, the code generator produces the following code inside of the cond_sub.c file:

/* System reset for action system: '<S1>/IASS1' */

void cond_sub_IASS1_Reset(void)

{

 /* InitializeConditions for UnitDelay: '<S4>/UD' */

 cond_sub_DW.UD_DSTATE_c = 0.0;

}

 …

/* System initialize for function-call system: '<Root>/FCSS' */

void cond_sub_FCSS_Init(void)

{

 /* InitializeConditions for UnitDelay: '<S1>/UD' */

 cond_sub_DW.UD_DSTATE = 2.0;

 /* SystemInitialize for Merge: '<S1>/M' */

 cond_sub_B.M = 3.0;

 /* SystemInitialize for Outport: '<Root>/O1' incorporates:

 * SystemInitialize for Outport: '<S1>/O1'

 */

 cond_sub_Y.O1 = 4.0;

}

/* System reset for function-call system: '<Root>/FCSS' */

void cond_sub_FCSS_Reset(void)

{

 /* InitializeConditions for UnitDelay: '<S1>/UD' */

 cond_sub_DW.UD_DSTATE = 2.0;

}

In R2016a, the cond_sub_FCSS_init function initializes the state of one Unit Delay
block. The code generator does not generate a cond_sub_IASS1_Init function to
initialize the state of the other Unit Delay block to zero because the Remove internal
data zero initialization parameter is selected.

The void cond_sub_IASS1_Reset and the void cond_sub_FCSS_Reset functions
reset the states of the Unit Delay blocks.

3-37

R2016a

If you know that a parent model does not have to reset the states of blocks inside a model
reference, you can remove the model_Reset function from the generated code. In the
Configuration Parameters dialog box, select Optimization > Optimize initialization
code for model reference to remove the model_Reset function.

Removal of unnecessary rtmIsFirstInitCond flag

In R2015b, for modeling patterns involving conditionally executed subsystems, the code
generator created an rtmIsFirstInitCond flag in the model_initialize function
and in the model_step function.

In R2016a, the code generator does not generate the rtmIsFirstInitCond flag, except
for S-Function blocks. This enhancement reduces code size and ROM consumption and
enables code reuse and a Simulink Code Inspector™ verification.

For example, the model removeflag contains a subsystem. This subsystem contains an
enabled and triggered subsystem and a triggered subsystem that feed into a Merge block.

3-38

 Performance

In R2015b, in the removeflag.c file, the code generator produced this code in the
removeflag_initialize function:

/* InitializeConditions for Atomic SubSystem: '<Root>/SS' */

 removeflag_SS_Init(removeflag_M, &removeflag_B.SS);

 /* End of InitializeConditions for SubSystem: '<Root>/SS' */

The code for the removeflag_SS_Init function was as follows:

/* Initial conditions for atomic system: '<Root>/SS' */

void removeflag_SS_Init(RT_MODEL_removeflag_T * const removeflag_M,

 B_SS_removeflag_T *localB)

{

 /* InitializeConditions for Merge: '<S1>/M' */

 if (rtmIsFirstInitCond(removeflag_M)) {

 localB->M = 3.0;

 }

3-39

R2016a

 /* End of InitializeConditions for Merge: '<S1>/M' */

}

In R2015b, for the removeflag_SS_Init function, the generated code contained the
rtmIsFirstInitCond flag.

In R2016a, in the _sharedutils folder, the code generator produces this reusable code:

/* System initialize for atomic system: 'SS' ('removeflagLib:1') */

void SS_bbDo8UEo_Init(B_SS_bbDo8UEo_T *localB)

{

 /* SystemInitialize for Merge: 'M' ('removeflagLib:11') */

 localB->M = 3.0;

}

The removeflag.c file contains a call to the SS_bbDo8UEo_T_Init function inside the
removeflag_initialize function:

/* SystemInitialize for Atomic SubSystem: '<Root>/SS' */

 SS_bbDo8UEo_Init(&removeflag_B.SS);

 /* End of SystemInitialize for SubSystem: '<Root>/SS' */

The generated code does not contain the rtmIsFirstInitCond flag. Instead, the
code generator generates reusable code for the SS_bbDo8UEo_T_Init function. The
rtmIsFirstInitCond flag is not needed because the model_Subsystem_Init function
initializes the states of blocks while the new reset function sets the states of all blocks
back to their initial conditions.

Optimized code for models containing logical operator blocks

In R2015b, for a model where an input signal fed into a Logical NOT block and either a
Logical AND block or a Logical OR block, the generated code contained an expression for
the Logical NOT and Logical AND or Logical OR blocks. In R2016a, the generated code
sets the output equal to either true or false. This optimization simplifies the code and
improves code efficiency.

For example, in the model andornotself, the input signal feeds into the Logical NOT
block and the Logical AND block.

3-40

 Performance

In R2015b, the generated code contained this code:

/* Model step function */

void andornotself_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Logic: '<Root>/Logical AND'

 * Logic: '<Root>/Logical NOT'

 */

 andornotself_Y.Out1 = (andornotself_U.In1 && (!andornotself_U.In1));

}

In R2016a, the generated code contains this code:

/* Model step function */

void andornotself_step(void)

{

 /* Outport: '<Root>/Out1' */

 andornotself_Y.Out1 = false;

}

The optimized code sets andornotself_Y.Out1 equal to false because the condition
andornotself_Y.Out1 = (andornotself_U.In1 && (!andornotself_U.In1)) is
false.

Improved code for conditional expressions involving Boolean expressions

In R2015b, for a model in which the generated code contained a conditional expression
involving Boolean expressions, the generated code contained an if-else statement. In
R2016a, the generated code uses && and || operators to enable short-circuit evaluation.
This optimization simplifies the code and improves code efficiency.

3-41

R2016a

For example, the model booleanConditionalExpr contains two Inport blocks, a Switch
block, a Constant block, and an Outport block. The Constant block has a value of false.

In R2015b, the code generator generated this code:

/* Model step function */

void booleanConditionalExpr_step(void)

{

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/cond'

 */

 if (booleanConditionalExpr_U.cond) {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/val'

 */

 booleanConditionalExpr_Y.Out1 = booleanConditionalExpr_U.val;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 */

 booleanConditionalExpr_Y.Out1 = false;

 }

 /* End of Switch: '<Root>/Switch' */

}

The generated code contained an if-else statement.

3-42

 Performance

In R2016a, the code generator generates this code:

/* Model step function */

void booleanConditionalExpr_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/cond'

 * Inport: '<Root>/val'

 */

 booleanConditionalExpr_Y.Out1 = (booleanConditionalExpr_U.cond &&

 booleanConditionalExpr_U.val);

}

The generated code contains an && expression. If booleanConditionalExpr_U.cond
is false, the && expression short-circuits and booleanConditionalExpr_Y.Out1
is equal to false. Otherwise, booleanConditionalExpr_Y.Out1 is equal to
booleanConditionalExpr_U.val.

memset Optimization for more scenarios

• “memset optimization for assigning a constant value to fields of a structure array” on
page 3-44

• “memset optimization for array element assignments” on page 3-45
• “memset optimization for consecutive assignments that define a continuous write” on

page 3-47

In R2015b, the code generator tried to replace a for loop that assigned a literal constant
to consecutive array elements with a memset function call. A memset function call can be
more efficient than for-loop controlled array element assignments.

In R2016a, the code generator attempts to invoke the memset optimization when
assigning a constant value to all fields of a structure array. The code generator
attempts to invoke the memset optimization for a loop with one or more array element
assignments and for consecutive statements that define a continuous write.

Note: The minimum array size for which memset function calls can replace for loops
depends on the setting of the Memcpy threshold (bytes) parameter. By default, this
parameter specifies 64 bytes as the minimum array size for which memset function calls
can replace for loops in the generated code.

3-43

R2016a

memset optimization for assigning a constant value to fields of a structure array

The following Simulink modeling pattern produces C code with a constant value
assignment to fields of a structure array:

• The input to a MATLAB Function block is an array of buses. The bus elements are
scalars.

• The MATLAB Function block contains a structure that writes the same value to each
bus element.

In R2015b, for this modeling pattern, the generated code contained for loop controlled
array element assignments. In R2016a, the code generator can replace these for loop
controlled array element assignments with memset function calls. This optimization
improves execution speed.

For example, in the following model, the input signal is an array of busses. The bus
elements are the three scalars, f1, f2, and f3.

The MATLAB Function block contains this code:

function outBus = fcn(inBus)

%#codegen

for k = 1:24

 inBus(k).f1 = int32(0);

 inBus(k).f2 = int32(0);

 inBus(k).f3 = int32(0);

3-44

 Performance

end

outBus=inBus;

end

In R2015b, the code generator produced this code:

 /* MATLAB Function 'AssignArrayOfBus': '<S1>:1' */

 /* '<S1>:1:4' for k = 1:24 */

 for (k = 0; k < 24; k++) {

 /* '<S1>:1:5' inBus(k).f1 = int32(0); */

 inBus[k].f1 = 0;

 /* '<S1>:1:6' inBus(k).f2 = int32(0); */

 inBus[k].f2 = 0;

 /* '<S1>:1:7' inBus(k).f3 = int32(0); */

 inBus[k].f3 = 0;

 }

 /* '<S1>:1:10' outbus = inBus; */

 memcpy(&localB->outBus[0], &inBus[0], sizeof(busOfScalars) << 5U);

The generated code contained a for loop for assigning a value of int32(0) to the
structure fields, f1, f2, and f3.

In R2016a, the code generator produces this code:

 /* MATLAB Function 'AssignArrayOfBus': '<S1>:1' */

 /* '<S1>:1:4' for k = 1:24 */

 /* '<S1>:1:5' inBus(k).f1 = int32(0); */

 /* '<S1>:1:6' inBus(k).f2 = int32(0); */

 /* '<S1>:1:7' inBus(k).f3 = int32(0); */

 memset(&inBus[0], 0, 24U * sizeof(busOfScalars));

 /* '<S1>:1:9' outBus=inBus; */

 memcpy(&localB->outBus[0], &inBus[0], sizeof(busOfScalars) << 5U); }

The generated code contains a memset function call for assigning a value of int32(0) to
the structure fields f1, f2, and f3.

memset optimization for array element assignments

For a Simulink model containing a Bus Assignment block that accepts a bus signal
consisting of arrays, the code generator produces C code with one or more array element

3-45

R2016a

assignments. If the Bus Assignment block assigns values to a single array of the bus
signal, the generated code contains one array element assignment. If the Bus Assignment
block assigns values to arrays in the bus signal, there are multiple array element
assignments. In R2015b, the generated code contained for loop controlled array element
assignments. In R2016a, the code generator can replace these for loop controlled array
element assignments with memset function calls. This optimization improves execution
speed.

For example, in following model, the input signal is a Simulink.Bus object consisting of
two arrays, f1 and f2. The Bus Assignment block assigns a value of 0 to every element
in f1 and a value of 255(MAX_uint8_T) to every element in f2.

3-46

 Performance

In R2015b, the code generator produced this code:

/* Model step function */

void memsetexample_step(void)

{

 int32_T i;

 /* Outport: '<Root>/Out1' */

 for (i = 0; i < 84; i++) {

 memsetexample_Y.Out1.f1[i] = 0;

 memsetexample_Y.Out1.f2[i] = MAX_uint8_T;

 }

 /* End of Outport: '<Root>/Out1' */

}

The generated code contained a for loop for assigning values to the arrays f1 and f2.

In R2016a, the code generator produces this code:

/* Model step function */

void memsetexample_step(void)

{

 /* Outport: '<Root>/Out1' */

 memset(&memsetexample_Y.Out1.f1[0], 0, 84U * sizeof(int16_T));

 memset(&memsetexample_Y.Out1.f2[0], 255, 84U * sizeof(uint8_T));

}

The generated code contains memset function calls for assigning values to f1 and f2.

memset optimization for consecutive assignments that define a continuous write

For a Simulink model containing a 1-D, 2-D, or multidimensional signal that feeds into
an Assignment block, the code generator produces C code with consecutive array element
assignments. In R2015b, if the following modeling conditions were met, the generated
code contained multiple assignment statements:

• The Assignment block assigned a value of 0 to multiply elements of an output signal.
• In the generated code, the array size was below the value of the loop unrolling

threshold parameter.

In R2016a, regardless of the value you set for the Loop unrolling threshold
parameter, the code generator can replace these assignment statements with a memset
function call. This optimization improves execution speed.

3-47

R2016a

For example, in the Inport block parameters dialog box, the Port Dimensions
parameter has a value of 128. The Assignment block assigns a value of 0 to the first 10
elements of this signal.

In R2015b, with a the code generator produced this code:

void memsetEx_basicDoubleZeroAssign(const real_T rtu_In1[128],

 B_basicDoubleZeroAssign_memse_T *localB)

{

 int32_T i;

 /* Assignment: '<S1>/Assignment' incorporates:

 * Constant: '<S1>/Constant'

 */

 memcpy(&localB->Assignment[0], &rtu_In1[0], sizeof(real_T) << 7U);

 localB->Assignment[0] = 0.0;

 localB->Assignment[1] = 0.0;

 localB->Assignment[2] = 0.0;

 localB->Assignment[3] = 0.0;

 localB->Assignment[4] = 0.0;

 localB->Assignment[5] = 0.0;

 localB->Assignment[6] = 0.0;

3-48

 Performance

 localB->Assignment[7] = 0.0;

 localB->Assignment[8] = 0.0;

 localB->Assignment[9] = 0.0;

 /* End of Assignment: '<S1>/Assignment' */

}

The generated code contained individual write statements for assigning a value of 0 to
the first 10 elements of the Assignment array.

In R2016a, the code generator produces this code:

void memsetEx_basicDoubleZeroAssign(const real_T rtu_In1[128],

 B_basicDoubleZeroAssign_memse_T *localB)

{

 /* Assignment: '<S1>/Assignment' incorporates:

 * Constant: '<S1>/Constant'

 */

 memcpy(&localB->Assignment[0], &rtu_In1[0], sizeof(real_T) << 7U);

 memset(&localB->Assignment[0], 0, 10U * sizeof(real_T));

}

The generated code contains a memset function call for assigning a value of 0 to the first
10 elements of the Assignment array.

Changes to meaning of createCRLEntry wildcard syntax for fixed-point
data

The meaning of wildcard symbols tilde (~) and asterisk (*) in conceptual argument
syntax specifications that you specify with the createCRLEntry function have changed.

Modified Syntax Meaning Prior to R2016a Meaning Starting with R2016a

Tilde symbol Slopes must be the same
across data types

Based on the position of the
symbol, slopes or bias must be
the same across data types

fixdt(1,16,*) y1 =

sin(fixdt(1,16,*)

u1) conceptual
specification

Specify fixed-point data
types and wildcard

Specify fixed-point data types
and set CheckSlope to false
and CheckBias to true

fixdt(1,16,~) y1 =

sin(fixdt(1,16,~)

Not applicable Specify fixed-point
data types and set

3-49

R2016a

Modified Syntax Meaning Prior to R2016a Meaning Starting with R2016a

u1) conceptual
specification

SlopesMustBeTheSame to
true, CheckSlope to false,
and CheckBias to true

fixdt(1,16,~,~) y1 =

sin(fixdt(1,16,~,~)

u1) conceptual
specification

Not applicable Specify fixed-point
data types and set
SlopesMustBeTheSame to
true, BiasMustBeTheSame to
true, CheckSlope to false,
and CheckBias to false

fixdt(1,16,*) y1

= fixdt(1,16,*) u1

+ fixdt(1,16,*) u2

conceptual specification

Specify fixed-point data
types and wildcard

Specify fixed-point data types
and set CheckSlope to false
and CheckBias to true

For more information, see the description of the createCRLEntry function.

Code replacements involving root-level I/O variables and data alignment

The code generator does not replace functions that use root-level I/O variables or
AUTOSAR inter-runnable access functions when it generates function code with C
function prototype control, C++ class I/O arguments step method, or the AUTOSAR
system target file.

If the following conditions exist, the code generator includes data alignment directives
for root-level I/O variables in the example main program file (ert_main.c or
ert_main.cpp) that it produces:

• Compiler supports global variable alignment
• Generate an example main program (select Configuration Parameters > All

Parameters > Generate an example main program)
• Generate a reusable function interface for the model (set Configuration

Parameters > Code Generation > Interface > Code interface packaging to
Reusable function)

• Function uses root-level I/O variables that are passed in as individual arguments (set
Configuration Parameters > Code Generation > Interface > Pass root-level I/
O asto Individual arguments)

• Replaced function uses a root-level I/O variable

3-50

http://www.mathworks.com/help/releases/R2016a/ecoder/ref/createcrlentry.html

 Performance

• Replaced function imposes alignment requirements

If you discard the generated example main program, align used root-level I/O variables
correctly.

If you choose not to generate an example main program in this case, the code generator
does not replace the function.

For more information, see Code Replacement Customization Limitations.

3-51

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-replacement-customization-limitations-scec.html

R2016a

Verification

SIL/PIL Data Access: Use vector Get/Set custom storage class and C++
parameter access methods

R2016a adds SIL and PIL support for data access capabilities:

• GetSet custom storage class support for vector signals and parameters. Previously,
GetSet SIL and PIL support was available for scalar signals, parameters, and global
data stores. For more information, see Access Data Through Functions with Custom
Storage Class GetSet.

• Simulation support for the Method and Inlined method options for the
Configuration Parameters > Code Generation > Interface > Parameter access
parameter. For more information, see Control Generation of C++ Class Interfaces.

SIL/PIL support for variant condition propagation

Model block SIL/PIL simulations support variant condition propagation with Variant
Source and Variant Sink blocks.

Top-model SIL/PIL and SIL/PIL block simulations do not support the propagation of
variant conditions across component boundaries.

SIL simulation returns standard output and standard error streams

During a SIL simulation, the SIL application redirects the stdout and stderr streams.
When the application terminates, the Diagnostic Viewer now displays the information
from the redirected streams.

The SIL application also provides a basic signal handler, which captures the POSIX
signals SIGFPE, SIGILL, SIGABRT, and SIGSEV. The SIL application includes the file
signal.h for the signal handler.

The information from the redirected streams can help you to debug SIL applications that
fail before the simulation is complete. For example, you can view:

• Output from printf statements in your code.
• Messages sent to stderr.

3-52

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html

 Verification

• Some low-level system messages.

For more information, see Debug SIL Simulation.

Linux SIL/PIL support for LDRA Testbed

For SIL and PIL simulations on Linux® systems, you can collect code coverage metrics by
using LDRA Testbed® from LDRA Technology. For more information, see Code Coverage
Tool Support.

3-53

http://www.mathworks.com/help/releases/R2016a/ecoder/ug/debug-code-during-sil-simulations.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-coverage-tool-support.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-coverage-tool-support.html

R2016a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

3-54

http://www.mathworks.com/support/bugreports/

R2015aSP1
Version: 6.8.1

Bug Fixes

R2015aSP1

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

4-2

http://www.mathworks.com/support/bugreports/

R2015b
Version: 6.9

New Features

Bug Fixes

Compatibility Considerations

R2015b

Code Generation from MATLAB Code

MATLAB Coder Storage Classes: Easily import and export data by using
storage classes

In R2015b, when you generate C/C++ code from MATLAB code, you can use a storage
class to control the declaration and definition of a global variable in the generated code.
Use of storage classes requires an Embedded Coder license.

In the context of code generation, a storage class is a specification that determines the
declaration and definition of a variable in the generated code. For code generation, the
term storage class is not the same as the C language term storage class specifier.

Storage classes help you to integrate generated code with external code. You can make a
generated variable visible to external code. You can also make variables declared in the
external code visible to the generated code. For code generation from MATLAB code, you
can use storage classes with global variables only. The storage class determines:

• The file placement of a global variable declaration and definition.
• Whether the global variable is imported from external code or exported for use by

external code.

To assign a storage class to a global variable, in your MATLAB code, use the
coder.storageClass function. Only when you use an Embedded Coder project or
configuration object for generation of C/C++ libraries or executables does the code
generation software recognize coder.storageClass calls.

The syntax for coder.storageClass is:

coder.storageClass(var_name, storage_class)

var_name is the name of a global variable. Specify var_name as a constant string.

storage_class can be one of the following values:

• 'ExportedGlobal'

• 'ImportedExtern'

• 'ImportedExternPointer'

For descriptions of these storage classes, see Storage Classes for Code Generation from
MATLAB Code.

5-2

http://www.mathworks.com/help/releases/R2015b/ecoder/ref/coder.storageclass.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/storage-classes-for-code-generation-from-matlab-code.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/storage-classes-for-code-generation-from-matlab-code.html

 Code Generation from MATLAB Code

For example, coder.StorageClass('g','ExportedGlobal') assigns the exported
global storage class to the global variable g.

For a detailed example, see Control Declarations and Definitions of Global Variables in
Code Generated from MATLAB Code.

If you do not assign a storage class to a global variable, the code generated for the
variable is the same as the code generated in previous releases.

MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized
code with BeagleBone Black hardware

In R2015b, you can use processor-in-the-loop (PIL) executions to verify generated code
that you deploy to target hardware using a MATLAB Coder workflow with an Embedded
Coder license. By using PIL with hardware, you can more effectively generate customized
code for your hardware by profiling speed and algorithm performance. You have the
option of using the command-line workflow or the MATLAB Coder app to configure your
target hardware for PIL executions.

This PIL execution is available with the following hardware support packages:

• Embedded Coder Support Package for BeagleBone Black Hardware
• Embedded Coder Support Package for ARM Cortex-A Processors

To use this PIL execution, you must install one of these support packages. For more
information, see:

• PIL Execution with ARM Cortex-A at the Command Line
• PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

Code generation assumptions verified during PIL execution

The settings on the More Settings > Hardware tab specify target behavior, which
result in the implementation of implicit assumptions in the generated code. Incorrect
settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a processor-in-the-loop (PIL) execution, the software verifies the
Hardware tab settings with reference to the target hardware. The software checks:

5-3

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/control-declarations-and-definitions-of-global-variables-in-the-generated-code.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/control-declarations-and-definitions-of-global-variables-in-the-generated-code.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-from-command-line.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-using-the-matlab-coder-app.html

R2015b

• The correctness of settings. For example, the integer bit length in the Sizes > int
field.

• Whether the settings are optimized. For example, the rounding of signed integer
division in the Signed integer division rounds to field.

If required, the software generates warnings and errors.

Control of signed right shifts in generated code

You can now control the use of signed right shifts in your generated code. Some coding
standards do not allow bitwise operations on signed integers. Disabling the use of signed
shifts in generated code increases the likelihood of compliance with MISRA. When you
specify that signed right shifts should not be used in your generated code, the software
replaces signed shifts with a call to a function that performs the operation without the
use of signed shifts.

To specify that MATLAB Coder not use signed right shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the
Generate arrow .

2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Allow right shifts on signed

integers check box.
• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'.

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the EnableSignedRightShifts property to false.

cfg.EnableSignedRightShifts = false;

5-4

 Code Generation from MATLAB Code

Detection of multiword operations

When an operation has an input or output larger than the largest word size of your
processor, the generated code contains multiword operations. Multiword operations can
be inefficient on hardware. The expensive fixed-point operations check now highlights
expressions in your MATLAB code that could result in multiword operations in generated
code. For more information on this check, see Find and Address Multiword Operations.

5-5

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/data-type-issues-in-generated-code.html#buth98k

R2015b

Model Architecture and Design

MISRA-C 2012: Comply with mandatory and required rules

Model Advisor checks support compliance with MISRA C:2012. Previously, Model
Advisor checks supported compliance with MISRA C:2004. To check that you developed
your model or subsystem to increase the likelihood of generating MISRA C:2012
compliant code:

1 Open the Model Advisor.
2 Navigate to By Task > Modeling Guidelines for MISRA C:2012.
3 Run the checks in the folder.

The following table summarizes the check changes. For information about MISRA C
versions and updates, see MISRA C Guidelines.

Check Update Addresses

Check configuration
parameters for MISRA C:2012

Renamed from Check
configuration
parameters for MISRA-
C:2004 compliance

MISRA C:2012

Check for blocks not
recommended for MISRA
C:2012

Renamed from
Check for blocks
not recommended
for MISRA-C:2004
compliance

MISRA C:2012

Check for bitwise operations
on signed integers

None MISRA C:2012, Dir 10.1

Check for recursive function
calls

New MISRA C:2012, Dir 17.2

Check for equality and
inequality operations on
floating-point values

New MISRA C:2012, Dir 1.1

Check for switch case
expressions without a default
case

New MISRA C:2012, Rule 16.4

5-6

http://www.mathworks.com/help/releases/R2015b/simulink/ug/consult-the-model-advisor.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/developing-models-and-code-that-comply-with-misra-c-guidelines.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7lc-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7lc-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1

 Model Architecture and Design

AUTOSAR 4.1.3 and 4.2: Import and export ARXML and generate code
for latest AUTOSAR standard

R2015b extends AUTOSAR schema support to schema 4.2 (revision 4.2.1) and schema 4.1
(revision 4.1.3). For a detailed list of AUTOSAR schemas supported for import and export
of arxml files and generation of AUTOSAR-compatible C code, see Select an AUTOSAR
Schema.

R2015b provides many other enhancements to Simulink modeling of AUTOSAR elements
and AUTOSAR code generation. For more information, see:

• Under Model Architecture and Design:

• “AUTOSAR sender-receiver modeling” on page 5-7
• “AUTOSAR client-server modeling” on page 5-10
• “AUTOSAR nonvolatile data communication modeling” on page 5-12
• “AUTOSAR component behavior modeling” on page 5-14
• “AUTOSAR COM_AXIS lookup table modeling” on page 5-15

• Under Code Generation:

• “AUTOSAR arxml round-trip” on page 5-21
• “Toolchain controls for AUTOSAR code generation” on page 5-24
• “AUTOSAR RTE file generation enhanced for SIL and PIL” on page 5-24
• “Lookup table blocks with new even spacing specification generate AUTOSAR

compatible IFX library routines” on page 5-26

AUTOSAR sender-receiver modeling

R2015b enhances AUTOSAR sender-receiver modeling with support for:

• IsUpdated API for receiver ports
• Data element invalidation policies on sender ports
• End-to-end protection for sender and receiver ports
• DataReceiveErrorEvent for receiver ports
• Rte_IWriteRef for sender ports

5-7

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

R2015b

IsUpdated API for receiver ports

AUTOSAR defines quality of service attributes, such as ErrorStatus and IsUpdated,
for sender-receiver interfaces. R2015b adds support for the AUTOSAR IsUpdated
attribute and API. The IsUpdated attribute allows an AUTOSAR receiver to detect
when a receiver port data element has received data since the last read occurred. When
data is idle, the receiver can save computational resources. You can:

• Import an AUTOSAR receiver port for which IsUpdated service is configured.
• Use Simulink to configure an AUTOSAR receiver port for IsUpdated service.
• Generate C and arxml code for an AUTOSAR receiver port for which IsUpdated

service is configured.

For more information, see Configure AUTOSAR Receiver Port for IsUpdated Service.

Data element invalidation policies on sender ports

AUTOSAR defines an invalidation mechanism for data elements on AUTOSAR sender
ports. To protect downstream data consumers from receiving invalid data, you can define
an invalidation policy for a sender port data element. R2015b adds support for data
element invalidation policies on sender ports. You can:

• Import AUTOSAR sender port data elements for which an invalidation policy is
configured.

• Use Simulink to configure an invalidation policy for AUTOSAR sender port data
elements.

• Generate C and arxml code for AUTOSAR sender port data elements for which an
invalidation policy is configured.

For more information, see Configure AUTOSAR Sender Port for Data Element
Invalidation.

End-to-end protection for sender and receiver ports

AUTOSAR end-to-end (E2E) protection for sender and receiver ports is based on the E2E
library. E2E is a C library that you can use to transmit data securely between AUTOSAR
components. End-to-end protection adds additional information to an outbound data
packet. The component receiving the packet can then verify independently that the
received data packet matches the sent packet. Potentially, the receiving component can
detect errors and take action.

5-8

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-receiver-port-for-isupdated-service.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-port-for-data-element-invalidation.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-port-for-data-element-invalidation.html

 Model Architecture and Design

For easier integration of AUTOSAR generated code with AUTOSAR E2E solutions,
R2015b adds support for AUTOSAR E2E protection. You can:

• Import AUTOSAR sender port and receiver ports for which E2E protection is
configured.

• Use Simulink to configure an AUTOSAR sender or receiver port for E2E protection.
• Generate C and arxml code for AUTOSAR sender and receiver ports for which E2E

protection is configured.

For more information, see Configure AUTOSAR S-R Interface Port for End-To-End
Protection.

DataReceiveErrorEvent for receiver ports

In AUTOSAR sender-receiver communication between software components, the run-
time environment (RTE) raises a DataReceiveErrorEvent when the communication
layer reports an error in data reception by the receiver component. For example. the
event can indicate that the sender component failed to reply within an aliveTimeout
limit, or that the sender component sent invalid data.

R2015b adds support for creating DataReceiveErrorEvents in AUTOSAR receiver
components. You can:

• Import an AUTOSAR DataReceiveErrorEvent definition.
• Use Simulink to define a DataReceiveErrorEvent.
• Generate arxml code for AUTOSAR receiver ports for which a

DataReceiveErrorEvent is configured.

For more information, see Configure AUTOSAR Receiver Port for
DataReceiveErrorEvent.

Rte_IWriteRef for sender ports

In R2015b, you can leverage the Rte_IWriteRef API (AUTOSAR Release 4.x) when
writing to AUTOSAR sender ports. Rte_IWriteRef returns a reference to the write
data, which the runnable code can use to directly update the corresponding data
elements. The API provides constant execution time for writes of any data element type,
including structure and matrix data.

If you want AUTOSAR sender port data to be written using Rte_IWriteRef
rather than Rte_IWrite, configure the corresponding Simulink root outport for
ImplicitSendByRef access. For example, suppose that you open the example model

5-9

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-or-receiver-port-for-end-to-end-protection.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-or-receiver-port-for-end-to-end-protection.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-receiver-port-for-datareceiveerrorevent-.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-receiver-port-for-datareceiveerrorevent-.html

R2015b

rtwdemo_autosar_counter, and change the data access mode of its root outport,
Output, from ImplicitSend to ImplicitSendByRef.

When you generate code, in rtwdemo_autosar_counter.c, the model step function
uses Rte_IWriteRef to write the sender port data.
void Runnable_Step(void)

{

 ...

 int32_T *tmp;

 tmp = Rte_IWriteRef_Runnable_Step_Output_Output();

 ...

 /* Outport: '<Root>/Output' incorporates:

 * Gain: '<S1>/Gain'

 * Inport: '<Root>/Input'

 ...

 */

 *tmp = Rte_Prm_rCounter_K() * Rte_IRead_Runnable_Step_Input_Input();

 ...

}

AUTOSAR client-server modeling

R2015b enhances AUTOSAR client-server modeling with support for:

• AUTOSAR error status
• AUTOSAR NVRAM memory services

AUTOSAR error status

In R2015b, you can model AUTOSAR application error status for client-server error
handling. In Simulink, you can:

• Import arxml code that implements client-server error handling.
• Configure error handling for a client-server interface.

5-10

 Model Architecture and Design

• Generate C and arxml code for client-server error handling.

For more information, see Configure AUTOSAR Client-Server Error Handling.

AUTOSAR NVRAM memory services

R2015b provides improved support for AUTOSAR nonvolatile RAM memory
(NvM) services, including the NvM APIs ReadBlock, WriteBlock, and
RestoreBlockDefaults. On ECU hardware startup or shutdown, or in response to an
explicit read or write request, NvM services store data needed by the AUTOSAR software
component. To better support NvM services, Embedded Coder:

• Imports and exports the void pointer data type that the NvM APIs use.
• Imports and exports asynchronous-server call points for calling the NvM APIs. The

arxml importer creates Function Caller blocks to model the call points.
• Enforces constraints for modeling the RAM block required for NvM API calls. A data

store memory block models the RAM block, and must directly connect to the Function
Caller block.

• Generates C code that provides the RAM block to the NvM API calls without creating
a local buffer.

Here is an example of Data Store Read and Function Caller blocks that model an
asynchronous call to the NvM WriteBlock service.

The generated C code calls the NvM WriteBlock service with the global RAM block as
an argument.
appErrType = Rte_Call_WriteBlock_client_WriteBlock(Rte_Pim_myDSM());

Compatibility Considerations

Enforcing the new modeling constraints can generate errors for models that previously
did not get errors. For example, if a Function Caller block configured to call an

5-11

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-client-server-communication.html#buzvyn4-1

R2015b

AUTOSAR NvM API does not directly connect to a data store block, Embedded Coder
generates an error.

AUTOSAR nonvolatile data communication modeling

In R2015b, you can model AUTOSAR nonvolatile (NV) data communication, as defined
in AUTOSAR Release 4.0 or later. To implement NV data communication, AUTOSAR
software components define provide and require ports that send and receive NV data. In
Simulink, you can:

• Import AUTOSAR NV data communication definitions from arxml code.
• Create AUTOSAR NV data communication elements, including an NV interface and

ports, and map Simulink inports and outports to AUTOSAR NV ports.
• Generate C and arxml code for AUTOSAR NV data communication elements.

To create NV data communication elements in Simulink:

1 Open the Configure AUTOSAR Interface dialog box and select AUTOSAR
Properties.

2
Select NV Interfaces. Click the Add icon to create a new NV data interface.
Specify its name and the number of associated NV data elements.

3 Select and expand the new NV interface. Select Data Elements, and modify the
data element attributes.

4 In the left-hand pane of the Configure AUTOSAR Interface dialog box, under
AUTOSAR, select AtomicComponents. Expand AtomicComponents and select
an AUTOSAR component. Expand the component.

5-12

 Model Architecture and Design

5 Select and use the NvReceiverPorts, NvSenderPorts, and
NvSenderReceiverPorts views to add the NV ports you require. For each NV port,
select the NV interface you created.

6 Switch to the Simulink mapping view. Select Simulink-AUTOSAR Mapping.
7 Select and use the Inports and Outports views to map Simulink inports and

outports to AUTOSAR NV ports. For each inport or outport, select an AUTOSAR
port, data element, and data access mode.

To programmatically configure AUTOSAR NV data communication elements, use the
AUTOSAR property and mapping functions. For example, the following MATLAB code

5-13

R2015b

adds an AUTOSAR NV data interface and an NV receiver port to an open model. It then
maps a Simulink inport to the AUTOSAR NV receiver port.
% Add AUTOSAR NV data interface myNvInterface with NV data element DE3

arProps = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables_nv');

addPackageableElement(arProps,'NvDataInterface','/pkg/if','myNvInterface');

add(arProps,'myNvInterface','DataElements','DE3');

% Add AUTOSAR NV receiver port NvRPort, associated with myNvInterface

add(arProps,'ASWC','NvReceiverPorts','NvRPort','Interface','myNvInterface');

% Map Simulink inport NvRPort_DE3 to AUTOSAR port/element pair NvRPort and DE3

slMap = autosar.api.getSimulinkMapping('rtwdemo_autosar_multirunnables_nv');

mapInport(slMap,'NvRPort_DE3','NvRPort','DE3','ImplicitReceive');

AUTOSAR component behavior modeling

R2015b enhances AUTOSAR component behavior modeling with support for:

• IRVs in feedback loops
• Constant memory with const or volatile type qualifiers

IRVs in feedback loops

Simulink modeling now supports an AUTOSAR inter-runnable feedback loop, that is,
AUTOSAR runnables accessing an AUTOSAR inter-runnable variable (IRV) with both
read and write access. For example, in the figure, Runnable2_subsystem can read and
write irv1. (Signal irv1 is shown in Highlight Signal to Source view.) In previous
releases, the software flagged an error for this modeling pattern.

5-14

 Model Architecture and Design

Constant memory with const or volatile type qualifiers

When modeling an AUTOSAR constant or static memory variable (AUTOSAR schema
4.x), you can now generate const, volatile, or const volatile qualifiers in C code
to control data access.

You model AUTOSAR constant memory and static memory using AUTOSAR4.Parameter
and AUTOSAR4.Signal data objects with a global storage class. Optionally, you can
create custom storage classes and memory sections to customize the code generated for
the global memory data, as described in Design Custom Storage Classes and Memory
Sections. The AUTOSAR4 data class package now provides CONST, VOLATILE, and
CONST_VOLATILE memory section definitions for configuring the const, volatile,
and const volatile qualifiers. You can reference the new memory-section values in
cscdesigner to set up memory sections, and then reference the values from within
AUTOSAR4.Parameter and AUTOSAR4.Signal data objects.

AUTOSAR COM_AXIS lookup table modeling

R2015b provides the ability to model common axis (COM_AXIS) lookup tables for
AUTOSAR applications. You can:

5-15

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/autosar4.parameter.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/autosar4.signal.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/design-custom-storage-classes-and-memory-sections.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/design-custom-storage-classes-and-memory-sections.html

R2015b

• Import AUTOSAR calibration parameters of category CURVE, MAP, CUBOID, and
COM_AXIS from arxml files into Simulink. The importer creates corresponding
model content, including n-D Lookup Table blocks and parameter objects.

• Use Simulink to create a COM_AXIS table and configure it for AUTOSAR run-time
calibration.

• Export COM_AXIS lookup table information in arxml code, including calibration
parameters of category CURVE, MAP, CUBOID, and COM_AXIS.

For more information, see Calibration Parameters for COM_AXIS Lookup Tables and
Configure COM_AXIS Lookup Table for Measurement and Calibration.

Embedded Coder model templates

In R2015b, Embedded Coder templates provide you with a starting point for quickly
developing models for code generation. Embedded Coder templates provide starting
models for the following applications:

• Code Generation System. Create a model to get started with code generation.
• Exported functions. Create a model for generating code from function-call subsystems.
• Fixed-step, multirate. Create a fixed-step model with multiple rates for production

code generation.
• Fixed-step, single-rate. Create a fixed-step model with a single rate for production

code generation.

In the templates, traceability and reporting are turned on so that you can easily evaluate
your generated code. The model configuration settings are based on code generation
objectives for execution efficiency and traceability.

For more information on using the templates, see Create a Model Configured for Code
Generation Using Embedded Coder Templates.

Removal of uncalled Disable functions from generated code

In R2015a, the code generator created Disable functions that the generated code did not
call. In R2015b, the code generator does not create uncalled Disable functions, except in
the following cases:

• A model containing a Model Reference block or an S-function block.
• You are exporting code for a function-call subsystem.

5-16

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/calibration-parameters.html#burrq1_-1
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-com-axis-lookup-tables-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/create-a-model-configured-for-code-generation-using-embedded-coder-templates.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/create-a-model-configured-for-code-generation-using-embedded-coder-templates.html

 Model Architecture and Design

In these cases, the code generator creates Disable functions that the generated code
might not call. The code generator does not have enough information to determine
whether the generated code requires the Disable functions.

This enhancement reduces code size and ROM consumption.

Enhancement to option for generating preprocessor conditionals

Previously, the Code Generation > Interface pane of the Model Configuration
Parameters dialog box contained the option to Generate preprocessor conditionals.
When you set this option to Enable all or Disable all, the global setting overrode
the local setting Generate preprocessor conditionals that you specified on Variant
Subsystem or Variant Model blocks.

In R2015b, the following enhancements have been made to the Generate preprocessor
conditionals option.

• The option is now local to Variant Subsystem and Variant Model blocks. The global
option has been removed from the Model Configuration Parameters dialog box. This
enhancement eliminates the confusion regarding which option, global or local, is
active.

• When you select this option, Simulink analyzes variant choices during an update
diagram or simulation. This analysis provides early validation of the code generation
readiness of variant choices.

• The Model Advisor now includes a check to identify models whose global Generate
preprocessor conditionals option is set to Enable all or Disable all. The
check provides instructions on how to migrate the global setting to individual variant
blocks.

Compatibility Considerations

• Previously, when the Generate preprocessor conditionals option was switched
on, Simulink analyzed variant choices only during the code generation phase. Now,
Simulink performs this analysis during the update diagram phase. As a result, errors
that you would normally see during code generation appear earlier, during an update
diagram.

• If you load a pre-R2015b model whose global Generate preprocessor conditionals
option was set to Enable all or Disable all, Embedded Coder generates a
warning. The warning contains instructions on how to migrate the global setting to

5-17

R2015b

individual variant blocks. After the migration is complete, the affected variant blocks
behave as they did in previous releases.

5-18

 Data, Function, and File Definition

Data, Function, and File Definition

Tokenized function names for custom storage class GetSet

When you apply the custom storage class GetSet to a signal, block parameter, or
state, you specify the names of functions to read or write the data in the generated
code. In R2015b, when you identify these function names by specifying the properties
GetFunction and SetFunction, you can use the token $N. The generated code calls the
functions that you specify by replacing the token with the name of the signal, parameter,
or state.

For example, if you specify the property GetFunction as get_$N_data for a signal
named mySig, the generated code calls the function get_mySig_data to access the
signal.

When you apply the custom storage class GetSet to new signals, parameters, or states,
the default GetFunction value is get_$N, and the default SetFunction value is set_
$N.

For more information, see Access Data Through Functions with Custom Storage Class
GetSet.

5-19

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/getset-custom-storage-classes.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/getset-custom-storage-classes.html

R2015b

Code Generation

Embedded Coder Quick Start: Quickly configure model to generate
reusable and efficient code

The Embedded Coder Quick Start tool helps you quickly generate readable, efficient code
from your Simulink model. To start the tool, from the model window, select Code > C/C+
+ > Embedded Coder Quick Start.

You must select preferences about your code generation objectives and target
environment. The tool then validates your choices against the model and presents the
parameter changes required to generate code. If you choose to generate code, the tool
executes the changes to your configuration set and generates the code.

When code generation is complete, links to the documentation present possible next
steps, such as customizing your generated code and refining code optimizations.

For more information, see Generate Code with the Embedded Coder Quick Start Tool.

Internationalization: Generate and review code containing mixed
languages for different locales

In R2015b, the code generator introduces support for non-US-ASCII characters in
compilable portions of generated source code. The code generator processes strings
without loss of information or character corruption by replacing unrepresented
characters of the user default encoding with an escape sequence of the form ode-
unit;. code-unit is the hexadecimal value for the unrepresented character. For
example, the code generator replaces the Japanese full-width Katakana letter ア with the
escape sequence ア. Cases where escape sequence replacements occur include:

• Strings representing model parameters, block names, and signal names that appear
in generated code comments.

• Output variables representing signal names and block names on block paths logged to
MAT- files.

• Variables representing block names on block paths logged to C API files
model_capi.c (or .cpp) and model_capi.h.

When generating HTML code reports, the code generator converts replacement character
escape sequences with original strings to preserve model-to-code traceability.

5-20

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/generate-code-using-embedded-coder-quick-start.html

 Code Generation

Two exceptions to the character escape sequence replacement scheme are:

• Comments in code generation template (.cgt) files
• Variables and function names in Target Language Compiler (.tlc) files

By default, code generation template files do not contain encoding information. The
operating system reads the files in the user default encoding, regardless of the encoding
that you use to write the file. You can enable escape sequence replacements by adding
the following token to your template file:

<encodingIn = "encoding">

Replace encoding with a string that names a standard character encoding scheme, such
as UTF-8, ISO-8859–1, or windows-1251.

Target Language Compiler files support user default encoding only. To use the compiler
to produce international custom generated code that is portable, use the 7-bit ASCII
character set when naming variables and functions.

For more information, see Internationalization and Code Generation.

MISRA C:2012 code generation objective

The Code Generation Advisor includes a new objective for MISRA C:2012 guidelines.
Setting the objective increases the likelihood of generating MISRA C:2012 compliant
code. The MISRA C:2012 guideline objective replaces the MISRA-C:2004 guideline.

For more information, see Configure Model for Code Generation Objectives Using Code
Generation Advisor.

Compatibility Considerations

The MISRA C:2012 guideline objective replaces the MISRA-C:2004 guideline. If you
use the command-line to set the ObjectivePriorities parameter to MISRA-C:2004
guideline, Embedded Coder will use the MISRA C:2012 guideline objective.

AUTOSAR arxml round-trip

R2015b enhances the AUTOSAR arxml round-trip workflow with support for:

5-21

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/international-character-support.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/configure-model-for-code-generation-objectives-using-code-generation-advisor.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/configure-model-for-code-generation-objectives-using-code-generation-advisor.html

R2015b

• Editable AUTOSAR display format for calibration
• Configurable export of AUTOSAR internal data constraints
• AUTOSAR reference bases
• AUTOSAR-typed per-instance memory import

Editable AUTOSAR display format for calibration

AUTOSAR display format specifications control the width and precision display for
calibration and measurement data. In R2015b, you can import and export AUTOSAR
display format specifications, and edit the specifications in Simulink. You can specify
display format for the following AUTOSAR data objects and elements:

• Signal and parameter data objects (AUTOSAR and AUTOSAR4 classes)
• Inter-runnable variables
• Sender-receiver interface data elements
• Client-server interface operation arguments
• CompuMethods

For more information, see Configure AUTOSAR Display Format for Measurement and
Calibration.

Configurable export of AUTOSAR internal data constraints

In releases before R2015b, you could not control the export or packaging of AUTOSAR
internal data constraints from Simulink. Code generation exported internal data
constraints to AUTOSAR package DataConstrs at a fixed location under the AUTOSAR
datatype package.

In R2015b, you can enable or disable export of AUTOSAR internal data constraints.
Export now is disabled by default. Optionally, you can specify the name and path of
an AUTOSAR package into which internal data constraints are exported. For more
information, see Configure AUTOSAR Internal Data Constraints Export.

AUTOSAR reference bases

Embedded Coder now can import AUTOSAR reference bases from arxml code into
a model. Reference bases, which are defined in AUTOSAR Release 4.0, allow the use
of relative paths in AUTOSAR specifications of packageable elements. In this arxml

5-22

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-display-format-for-calibration.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-display-format-for-calibration.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/control-autosar-internal-data-constraints-export.html

 Code Generation

code example, reference base CMs resolves to /pkg/Components/MyComponent/
CompuMethods.

AUTOSAR-typed per-instance memory import

R2014a introduced modeling and code generation support for AUTOSAR-typed per-
instance memory (arTypedPerInstanceMemory) in Simulink models. With R2015b,
you can import arTypedPerInstanceMemory definitions from arxml code into a model.
When you import an arTypedPerInstanceMemory definition, the arxml importer:

5-23

R2015b

• Creates an AUTOSAR.Signal data object, sets its Storage class to
PerInstanceMemory, and configures per-instance memory attributes.

• Creates a Data Store Memory block that references the AUTOSAR.Signal object.

For more information, see Per-Instance Memory and Configure AUTOSAR Per-Instance
Memory.

Toolchain controls for AUTOSAR code generation

The AUTOSAR target (autosar.tlc) now supports toolchain controls for C code
generation. When you select the AUTOSAR target, the Configuration Parameter dialog
box displays toolchain parameters rather than the template makefile (TMF) parameters
previously displayed. You can more flexibly configure AUTOSAR code generation, for
example, for processor-in-the-loop (PIL) verification, or to leverage a toolchain-based
hardware support package.

Other targets that support toolchain controls include the ERT targets ert.tlc and
ert_shrlib.tlc.

AUTOSAR RTE file generation enhanced for SIL and PIL

Building an AUTOSAR model generates RTE (run-time environment) files into the stub
subfolder of the model build folder. The RTE files have .c and .h extensions, and contain
stub implementations of the AUTOSAR Rte functions. The stub implementations can
be used to test the generated C code in Simulink, for example, in software-in-the-loop
(SIL) or processor-in-the-loop (PIL) simulations of the component under test. When the

5-24

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/model-autosar-component-behavior.html#bsn91k_
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/use-data-store-memory-blocks-to-specify-per-instance-memory.html
http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/use-data-store-memory-blocks-to-specify-per-instance-memory.html

 Code Generation

generated code ultimately is deployed in the AUTOSAR RTE, you replace the RTE stub
files with externally-generated RTE files.

R2015b enhances the generated RTE stub files in many respects. The build generates
most of the same RTE stub files as before, but with improved content:

• More closely reflects the AUTOSAR element content of the model.
• More closely resembles what an external RTE Generator creates.
• Better descriptions of content and possible uses.

R2015b also generates new stub files, Std_Types.h: and Platform_Types.h:

• Std_Types.h is a standard AUTOSAR file that defines basic data types.
• Platform_Types.h maps AUTOSAR base types to platform types.
• Std_Types.h includes Platform_Types.h, and is included by Rte_Type.h.

5-25

R2015b

Lookup table blocks with new even spacing specification generate
AUTOSAR compatible IFX library routines

As of R2015b, lookup table blocks generate AUTOSAR compatible IFX library routines.
Lookup table blocks were enhanced to support a new specification for even-spacing
breakpoints, which supports and generates AUTOSAR IFX routines.

For more information, see Code Replacement for AUTOSAR.

Control use of signed shifts in generated code

You can now control the use of signed right shifts in your generated code. Some coding
standards do not allow bitwise operations on signed integers. Disabling the use of signed
shifts in generated code increases the likelihood of compliance with MISRA. When you
specify that signed right shifts should not be used in your generated code, the software
replaces signed shifts with a call to a function that performs the operation without the
use of signed shifts.

To specify that the code generator not use signed right shifts, in the Configuration
Parameters dialog box, on the Code Generation > Code Style pane, clear Allow right
shifts on signed integers or set the parameter EnableSignedRightShifts to off.

Code generation report with operator traceability

In R2015b, the HTML code generation report provides traceability between operators in
the generated code and Simulink blocks. In the HTML report window, click an operator
hyperlink to highlight the source block in the model. In the model, right-click an operator
block. From the context menu, select C/C++ Code > Navigate to C/C++ Code. This
selection highlights the generated code for the block in the HTML code generation report.
Operator traceability information is included in the Traceability Report section of the
code generation report. This information is also in the generated traceability matrix.

The code generation report does not provide traceability between operators and Stateflow
or MATLAB Function blocks.

5-26

http://www.mathworks.com/help/releases/R2015b/ecoder/autosar/code-replacement-for-autosar.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1

 Deployment

Deployment

Hardware Implementation Selection: Quickly generate code for popular
embedded processors

Specification of hardware configurations has been simplified. Top-level Configuration
Parameters dialog box panes, Run on Target Hardware and Coder Target, have been
removed. Parameters previously available on those panes now appear on the Hardware
Implementation pane. A parameter has also moved from the Code Generation pane
to the Hardware Implementation pane.

This list summarizes the R2015b changes and new behavior:

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only.

• If you use Simulink without a Simulink Coder license, initially parameters on the
Hardware Implementation pane are disabled. To enable them, click Enable
hardware specification. The parameters remain enabled for the current MATLAB
session.

• By default, the Hardware board list includes: None or Determine by Code
Generation system target file, and Get Hardware Support Packages.
After installing a hardware support package, the list also includes corresponding
hardware board names.

• If you select a hardware board name, parameters for that board appear in the dialog
box display.

• Lists for the Device vendor and Device type parameters have been updated to
reflect hardware that is available on the market. The default Device vendor and
Device type are Intel and x86-64 (Windows64), respectively.

• If Simulink Coder is installed, the revised Hardware Implementation pane
identifies the system target file that you selected on the Code Generation pane.

• A Device details option provides a way to display parameters for setting details such
as number of bits and byte ordering.

• To specify target hardware for a Simulink support package, select a value from
Configuration Parameters > Hardware Implementation > Hardware board.
Before R2015b, you selected Tools > Run on Target Hardware > Prepare to run.
Then, you selected a value from Configuration Parameters > Run on Target
Hardware > Target hardware.

5-27

R2015b

• To specify target hardware for an Embedded Coder support package, select a value
from Configuration Parameters > Hardware Implementation > Hardware
board. Before R2015b, you selected a value from Configuration Parameters >
Code Generation > Target hardware.

• The Test hardware section was removed. Configure test hardware from the
Configuration Parameters list view. Set ProdEqTarget to off, which enables
parameters for configuring test hardware details.

• If you set Configuration Parameters > Code Generation > System target file
to ert.tlc, realtime.tlc, or autosar.tlc, the default setting for Configuration
Parameters > Hardware Implementation > Hardware board is None. If you set
System target file to value other than ert.tlc, autosar.tlc, or realtime.tlc,
the default setting for Hardware board is Determine by Code Generation
system target file.

For more information, see Hardware Implementation Pane.

Compatibility Considerations

Starting in R2015b:

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only. To view parameters for setting
details, such as number of bits and byte ordering, click Device details.

• The following devices appear on the Hardware Implementation pane only for
models that you create with a version of the software earlier than R2015b. These
devices are considered legacy devices.

Generic, 32-bit Embedded Processor
Generic, 64-bit Embedded Processor (LP64)
Generic, 64-bit Embedded Processor (LLP64)
Generic, 16-bit Embedded Processor
Generic, 8-bit Embedded Processor
Generic, 32-bit Real-Time Simulator
Generic, 32-bit x86 compatible
Intel, 8051 Compatible
Intel, x86–64
SGI, UltraSPARC Iii

In R2015b, if you open a model configured for a legacy device and change the Device
type setting, you cannot select the legacy device again.

5-28

http://www.mathworks.com/help/releases/R2015b/simulink/gui/hardware-implementation-pane.html

 Deployment

• Device parameter Signed integer division rounds to is set to Zero instead of
Undefined. For some cases, numerical differences can occur in results produced with
Zero versus Undefined for simulation and code generation.

This change does not apply to legacy devices.
• To associate a new model with an existing configuration set that has the following

characteristics, configure the model to use the same hardware device as the existing
model.

• The model consists of a model reference hierarchy. Models in the hierarchy use
different configuration sets.

• The existing configuration set was saved as a script and associated with a
configuration set variable.

If the code generator detects differences in device parameter settings, a consistency
error occurs. To correct the condition, look for differences in the device parameter
settings, and make the appropriate adjustments.

Code Replacement Tool uses simplified specification

As of R2015b, where possible, the Code Replacement Tool creates code replacement table
entries by using an approach that significantly reduces the amount of relevant code.
Instead of using separate function calls to create the entry, conceptual arguments, and
implementation arguments, the tool uses the createCRLEntry function to create entries
from conceptual and implementation argument string specifications. The tool continues
to use the more verbose approach for entries that involve:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, build information)
• Semaphore and mutex function replacements

For more information, see createCRLEntry and Define Code Replacement Mappings.

Code replacement support for new lookup table breakpoint specification

In R2015b, n-D Lookup Table and Prelookup blocks support a new specification for
evenly spaced breakpoints. Rather than specifying breakpoints as a vector, for n-D

5-29

http://www.mathworks.com/help/releases/R2015b/ecoder/ref/codereplacementtool-app.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/createcrlentry.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ref/createcrlentry.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/define-code-replacement-mappings-sc.html

R2015b

Lookup Table blocks, you can enter values for First point and Spacing parameters for
each dimension of the breakpoint data. For Prelookup blocks, you can enter values for
First point, Spacing, and Number of points. The code replacement software supports
this new breakpoint specification through alternative conceptual function signatures for
n-D Lookup Table and Prelookup blocks.

For more information, see n-D Lookup Table, Prelookup, and Lookup Table Function
Code Replacement.

Support for Analog Devices VisualDSP++ will be removed

Support for Analog Devices® VisualDSP++® will be removed in a future release.

5-30

http://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/lookup-table-function-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/lookup-table-function-code-replacement-sc.html

 Performance

Performance

RAM/ROM Optimization Improvements: Generate more efficient code
using reusable storage class and converting data copies to pointer
assignments

Reuse input and output of a block or subsystem

Previously, if a pair of model block I/O signals shared the same Reusable storage
class specification, the code generator reused the root I/O signals in the generated
code. In R2015b, this optimization extends to the input and output signals at a block or
subsystem boundary if the input and output arguments have the same data types and
sampling rates. This optimization can reduce the number of global variables, data copies,
and RAM/ROM consumption in the generated code. For more information, see Buffer
Reuse Around a Block or Subsystem Boundary

More efficient code for large data sets

Previously, for many data transfers involving vector signals, the code generator replaced
a for loop controlled array element assignment with a memcpy function call. In R2015b,
the code generator can replace a for loop controlled array element assignment that is
inside of an if-else statement with a memcpy function call. The code generator can
replace multiple array element assignments inside of a for loop with memcpy function
calls. These optimizations improve execution speed.

In R2015b, the code generator attempts to replace for loop controlled array element
assignments and memcpy function calls with pointer assignments. Because this
optimization eliminates full array data copies, it improves execution speed and saves
stack space.

Consider the following model named dynamicLookup. The Data Store Read blocks are
copying data from their named data stores (Data1 or Data2) to the input buffers of the
Lookup Table.

5-31

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/buffer-reuse-at-block-or-subsystem-boundary.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/buffer-reuse-at-block-or-subsystem-boundary.html

R2015b

In R2015a, the code generator produced this code:

/* Model step function */

void dynamicLookup_step(void)

{

 /* local block i/o variables */

 real32_T rtb_DataStoreRead[10];

 uint16_T rtb_DataStoreRead1[10];

 int32_T i;

 /* DataStoreRead: '<>/Data Store Read' */

 for (i = 0; i < 10; i++) {

 rtb_DataStoreRead[i] = Data1[i];

 /* DataStoreRead: '<>/Data Store Read1' */

 rtb_DataStoreRead1[i] = Data2[i];

 }

...

LookUp_real_TU16_real32_T(&(dynamicLookup_Y.Out1), &rtb_DataStoreRead1[0],

 dynamicLookup_U.In1, &rtb_DataStoreRead[0], 9U);

}

In R2015b, the code generator produces this code:

5-32

 Performance

/* Model step function */

void dynamicLookup_step(void)

{

real32_T *rtb_DataStoreRead_0;

uint16_T *rtb_DataStoreRead1_0;

/* DataStoreRead: '<Root>/Data Store Read' */

rtb_DataStoreRead_0 = (&(Data1[0]));

/* DataStoreRead: '<Root>/Data Store Read1' incorporates:

* DataStoreRead: '<Root>/Data Store Read'

*/

rtb_DataStoreRead1_0=(&(Data2[0]));

...

LookUp_real_TU16_real32_T(&(dynamicLookup_Y.Out1), rtb_DataStoreRead1_0,

 dynamicLookup_U.In1, rtb_DataStoreRead_0, 9U);

}

In R2015a, the generated code contains a for loop and data copies to the arrays
rtb_DataStoreRead and rtb_DataStoreRead1. In R2015b, the code generator
replaces the for loop with pointer assignments to the variables rtb_DataStoreRead_0
and rtb_DataStoreRead1_0. For more information, see Optimize Memory Usage for
Vector Signal Assignments

Live Execution Profiling: View PIL profile results during run-time

During a processor-in-the-loop (PIL) simulation, you can use the Simulation Data
Inspector to view streamed task execution times. Previously, this data was available only
at the end of the PIL simulation. For more information, see View and Compare Code
Execution Times.

Enhanced support for buffer reuse at the root-level input and output ports

Reusable custom storage class for model block input and output ports

Previously, if a pair of root-level model input and output signals used the same
Reusable storage class specification, the code generator reused the root I/O signals in
the generated code. In R2015b, the code generator enables this optimization for models
containing subsystems. This optimization can reduce data copies, global variables,
and ROM/RAM consumption. For example, consider the following model named
IObuffreuse.

5-33

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/view-and-compare-code-execution-times.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/view-and-compare-code-execution-times.html

R2015b

In R2015a, the code generator produces the following code:

void IObuffreuse_Subsystem(const real_T rtu_In1[6], B_Subsystem_IObuffreuse_T

 *localB)

{

 int32_T i;

 for (i = 0; i < 6; i++) {

 localB->ca[i] = 4.0 * rtu_In1[i];

 }

}

void IObuffreuse_step(void)

{

 int32_T i;

 for (i = 0; i < 6; i++) {

 abc_0[i] = abc[i];

 }

 IObuffreuse_Subsystem(abc_0, &IObuffreuse_B.Subsystem);

 for (i = 0; i < 6; i++) {

 abc[i] = 11.0 * IObuffreuse_B.Subsystem.ca[i];

 }

}

In R2015b, the code generator produces the following code:

void IObuffreuse_Subsystem(const real_T rtu_In1[6], B_Subsystem_IObuffreuse_T

 *localB)

{

 int32_T i;

 for (i = 0; i < 6; i++) {

 localB->ca[i] = 4.0 * rtu_In1[i];

 }

}

void IObuffreuse_step(void)

5-34

 Performance

{

 int32_T i;

 IObuffreuse_Subsystem((&(abc[0])), &IObuffreuse_B.Subsystem);

 for (i = 0; i < 6; i++) {

 abc[i] = 11.0 * IObuffreuse_B.Subsystem.ca[i];

 }

}

In R2015a, the generated code contains an additional buffer named abc_0. The code also
contains a full array data copy from abc_0 to abc in the model step function. In R2015b,
the additional buffer and the full array data copy are not in the generated code.

For more information on how to configure your model to use this optimization, see Buffer
Reuse for Model Block Boundary and Unit Delay.

Combined input and output arguments with function prototype control

Previously, the code generator tried to reuse buffers for a pair of model step function
input and output ports that were assigned the same argument name using function
prototype control. This optimization can reduce data copies, global variables, and ROM/
RAM consumption. In R2015b, the code generator enables this optimization for models
containing subsystems. For example, consider the following model named FPCioreuse.

In R2015a, the code generator produces the following code:

void mg956114fpc2_custom(real_T arg_Inout1[6])

{

 int32_T i;

 for (i = 0; i < 6; i++) {

 arg_Inout1_0[i] = arg_Inout1[i];

 }

5-35

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

R2015b

 FPCioReuse_Subsystem(arg_Inout1_0, &FPCioReuse_B.Subsystem);

 for (i = 0; i < 6; i++) {

 arg_Inout1[i] = 11.0 * FPCioReuse_B.Subsystem.ca[i];

 }

}

In R2015b, the code generator produces the following code:

void mg956114fpc2_custom(real_T arg_Inout1[6])

{

 int32_T i;

 FPCioReuse_Subsystem(arg_Inout1, &FPCioReuse_B.Subsystem);

 for (i = 0; i < 6; i++) {

 arg_Inout1[i] = 11.0 * FPCioReuse_B.Subsystem.ca[i];

 }

}

In R2015a, the code contains an additional buffer named arg_Inout1_0. The code also
contains a full array data copy from arg_Inout1 to arg_Inout1_0. In R2015b, the
temporary buffer and full array data copy are not in the generated code.

To configure model step function I/O arguments to allow buffer reuse, use either C
function prototype control or C++ class interface control. For more information, see
Combine Input and Output Arguments in Model Step Interface.

More efficient code for small subsystems

Previously, if a subsystem was in a model or model hierarchy more than once and
the subsystem function packaging was set to auto, Embedded Coder generated a
separate, reusable function with arguments.

In R2015b, if these subsystems are small and not too complex, the code generator inlines
the code for each subsystem. This enhancement reduces data copies, RAM consumption,
and code size. It also improves execution speed. For large-scale models containing
thousands of subsystems, this enhancement saves time because you do not have to
manually set function packaging to inline for each subsystem.

Consider the following model named auto_funcpackaging. This model contains
two identical, simple subsystems named if Action Subsystem and If Action
Subsystem1.

5-36

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1

 Performance

In R2015a, the code generator produced the following code:

void auto_funcpack_IfActionSubsystem(real_T rtu_In1,

 rtDW_IfActionSubsystem_auto_fun *localDW)

{

 localDW->Gain = 4.0 * rtu_In1;

}

void auto_funcpackaging_step(void)

{

 if (auto_funcpackaging_U.Cond > 0.0) {

 auto_funcpack_IfActionSubsystem(auto_funcpackaging_U.In1,

 &auto_funcpackagin_DWork.IfActionSubsystem);

 } else {

 auto_funcpack_IfActionSubsystem(auto_funcpackaging_U.In2,

 &auto_funcpackaging_DWork.IfActionSubsystem);

 }

 auto_funcpackaging_Y.outa =

5-37

R2015b

 auto_funcpackaging_DWork.IfActionSubsystem.Gain;

 auto_funcpackaging_Y.outa1 =

 auto_funcpackaging_DWork.IfActionSubsystem1.Gain;

}

In R2015b, the code generator produces this code:

void auto_funcpackaging_step(void)

{

 if (auto_funcpackaging_U.Cond > 0.0) {

 auto_funcpackaging_Y.outa = 4.0 * auto_funcpackaging_U.In1;

 } else {

 auto_funcpackaging_Y.outa1 = 4.0 * auto_funcpackaging_U.In2;

 }

}

In R2015a, the code generator produced the reusable function named
auto_funcpack_IfActionSubsystem, which is called twice in the generated code.
In R2015b, because the subsystem consists of simple signal paths, the code generator
inlines the code for each subsystem. For more information, see Generate Inlined
Subsystem Code

More efficient code for Simulink.Bus objects

Previously, if a Data Store Memory block stored a Simulink.Bus object, and Data Store
Read and Data Store Write blocks updated the Simulink.Bus object, there were extra
data copies in the generated code.

In R2015b, the code generator has improved expression folding capabilities, so that these
additional data copies are not in the generated code. This enhancement reduces code size
and RAM consumption and increases execution speed.

For example, consider the following subsystem.

5-38

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/inline-subsystem-code.html
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/inline-subsystem-code.html

 Performance

In R2015a, the code generator produced this code:

void f(void)

{

 real_T rtb_Gain2[170];

 real_T rtb_Gain3[190];

 int32_T i;

 for (i = 0; i < 170; i++) {

 rtb_Gain2[i] = 3.0 * rtDW.A.c[i];

 }

 for (i = 0; i < 190; i++) {

 rtb_Gain3[i] = 4.0 * rtDW.A.d[i];

 }

 for (i = 0; i < 150; i++) {

 rtDW.A.b[i] *= 2.0;

 }

 for (i = 0; i < 170; i++) {

 rtDW.A.c[i] = rtb_Gain2[i];

 }

 for (i = 0; i < 190; i++) {

 rtDW.A.d[i] = rtb_Gain3[i];

 }

}

5-39

R2015b

In R2015b, the code generator produces this code:

void f(void)

{

 int32_T i;

 for (i = 0; i < 150; i++) {

 rtDW.A.b[i] *= 2.0;

 }

 for (i = 0; i < 170; i++) {

 rtDW.A.c[i] *= 3.0;

 }

 for (i = 0; i < 190; i++) {

 rtDW.A.d[i] *= 4.0;

 }

}

In R2015a, the generated code contained full array data copies from rtb_Gain2 to
rtDW.A.c and from rtb_Gain3 to rtDW.A.d. In R2015b, if a Bus Assignment block
source and destination are the same Data Store Memory block, the code generator
implements the Bus Assignment block in place in the generated code. As a result, the
extra data copies are not in the generated code.

Enhanced local variable reuse

In R2015b, the code generator reuses more local variables, which reduces RAM and ROM
consumption.

Consider the following model named local_reuse. This model contains four identical
MATLAB Functions and a subsystem. The signals are matrices of size [5 5].

5-40

 Performance

In R2015a, for the model step function, the code generator produced this code:

void local_reuse_step(void)

{

 real_T rtb_sum_g[25];

 real_T rtb_prod_o[25];

 real_T rtb_sum_a[25];

 real_T rtb_prod_h[25];

 real_T rtb_sum_j0[25];

 real_T rtb_prod_i[25];

 int32_T i;

 local_reuse_Step0(local_reuse_U.In1, local_reuse_U.In2, rtb_sum_g, rtb_prod_o);

 local_reuse_Subsystem(rtb_sum_g, rtb_prod_o, local_reuse_B.Gain,

 local_reuse_B.Gain1, &local_reuse_DW.Subsystem);

 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);

 local_reuse_Step0(rtb_sum_a, rtb_prod_h, rtb_sum_j0, rtb_prod_i);

 local_reuse_Step0(rtb_sum_j0, rtb_prod_i, rtb_sum_g, rtb_prod_o);

 for (i = 0; i < 25; i++) {

 local_reuse_Y.Out1[i] = local_reuse_B.Gain[i] * rtb_sum_g[i];

 local_reuse_Y.Out2[i] = local_reuse_B.Gain1[i] * rtb_prod_o[i];

 }

}

The generated code contained six local arrays, rtb_sum_g, rtb_prod_o, rtb_sum_a,
rtb_prod_h, rtb_sum_jo, and rtb_prod_i to handle the input and output of the four
MATLAB Functions.

In R2015b, for the model step function, the code generator produces this code:

void local_reuse_step(void)

5-41

R2015b

{

 real_T rtb_sum_g[25];

 real_T rtb_prod_o[25];

 real_T rtb_sum_a[25];

 real_T rtb_prod_h[25];

 int32_T i;

 local_reuse_Step0(local_reuse_U.In1, local_reuse_U.In2, rtb_sum_g, rtb_prod_o);

 local_reuse_Subsystem(rtb_sum_g, rtb_prod_o, local_reuse_B.Gain,

 local_reuse_B.Gain1, &local_reuse_DW.Subsystem);

 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);

 local_reuse_Step0(rtb_sum_a, rtb_prod_h, rtb_sum_g, rtb_prod_o);

 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);

 for (i = 0; i < 25; i++) {

 local_reuse_Y.Out1[i] = local_reuse_B.Gain[i] * rtb_sum_a[i];

 local_reuse_Y.Out2[i] = local_reuse_B.Gain1[i] * rtb_prod_h[i];

 }

}

The generated code contains four local arrays, rtb_sum_g, rtb_prod_o, rtb_sum_a,
and rtb_prod_h to handle the input and output of the four MATLAB Functions.
Because the code generator reuses more local variables, there are two less local arrays
than there were in R2015a.

Enhanced consolidation of for loops

Previously, the code generator tried to combine for loops that had the same number of
iterations. In R2015b, the code generator combines more cases of for loops that have the
same number of iterations. These for loops read and write to separate sections of the
same array and write to scalar variables. This optimization conserves ROM consumption
and improves execution speed.

Consider the following model named loopfusion. This model contains two Mux blocks
that combine vector signals from three Inport blocks into an output vector signal. The
three input vector signals have a dimension size of 5. The output vector signal has a
dimension size of 15.

5-42

 Performance

In R2015a, the code generator produced this code:

/* Model step function */

void loopfusion_step(void)

{

 int32_T i;

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 */

 for (i = 0; i < 5; i++) {

 loopfusion_Y.Out1[i] = loopfusion_U.In1[i];

 }

 for (i = 0; i < 5; i++) {

 loopfusion_Y.Out1[i + 5] = loopfusion_U.In2[i];

 }

 for (i = 0; i < 5; i++) {

 loopfusion_Y.Out1[i + 10] = loopfusion_U.In3[i];

 }

 /* End of Outport: '<Root>/Out1' */

In R2015a, there were three for loops that wrote to three separate sections of the array,
loopfusion_Y.Out1.

In R2015b, the code generator produces this code:

/* Model step function */

5-43

R2015b

void loopfusion_step(void)

{

 int32_T i;

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 */

 for (i = 0; i < 5; i++) {

 loopfusion_Y.Out1[i] = loopfusion_U.In1[i];

 loopfusion_Y.Out1[i + 5] = loopfusion_U.In2[i];

 loopfusion_Y.Out1[i + 10] = loopfusion_U.In3[i];

 }

 /* End of Outport: '<Root>/Out1' */

In R2015b, there is one for loop that writes to three separate sections of the array,
loopfusion.Out1.

5-44

 Verification

Verification

Faster SIL and PIL Verification Workflow

R2015b enables faster software-in-the-loop (SIL) and processor-in-the-loop (PIL)
verification by providing:

• Model block SIL/PIL and SIL/PIL block support for fast restart — You can tune
parameters and run simulations without model recompilation.

• Model block SIL/PIL support for Accelerator mode — If you have a model with Model
blocks in SIL/PIL mode, you can run the top-model simulation in Accelerator mode,
which speeds up the simulation of components that are not in SIL or PIL mode.

For more information, see Speed Up SIL/PIL Verification .

Code generation assumptions verified during PIL simulation

The settings on the Configuration Parameters > Hardware Implementation pane
specify target behavior, which result in the implementation of implicit assumptions in
the generated code. Incorrect settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a PIL simulation, the software verifies the Hardware Implementation
pane settings with reference to the target hardware. The software checks:

• The correctness of settings. For example, the integer bit length in the Number of
bits: int field.

• Whether the settings are optimized. For example, the rounding of signed integer
division in the Signed integer division rounds to field.

If required, the software generates warnings and errors.

SIL and PIL support for C++ class root-level I/O access methods

The Configuration Parameters > Code Generation > Interface > External I/
O access parameter (GenerateExternalIOAccessMethods) specifies whether to

5-45

http://www.mathworks.com/help/releases/R2015b/ecoder/ug/speed-up-silpil-verification.html

R2015b

generate root-level I/O signal access methods for a C++ class. R2015b provides SIL and
PIL simulation support for these parameter values:

• Structure-based method — Code generator produces noninlined, structure-based
access methods.

• Inlined structure-based method — Code generator produces inlined, structure-
based access methods.

Previously, SIL and PIL simulations supported only access methods that were not
structure-based.

For more information, see External I/O access and Configure Step Method for Model
Class.

Removal of Generate code only parameter restriction

You can run top-model and Model block SIL and PIL simulations even if you select the
Generate code only (GenCodeOnly) parameter. Previously, running the SIL and PIL
simulations with the parameter produced an error. For a SIL or PIL block, the restriction
still applies. For additional Generate code only enhancements, see Smarter Code
Regeneration: Regenerate code only when model settings that impact code are modified.

Removal of scheduling limitations that caused algebraic loops

In R2015b, the internal scheduling of messages between host and target in a SIL or PIL
simulation is modified. This modification removes the S-function scheduling limitations
that previously caused algebraic loops in SIL and PIL simulations.

5-46

http://www.mathworks.com/help/releases/R2015b/rtw/ref/simulink-coder-parameters-on-all-parameters-tab.html#br55ax2-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1
http://www.mathworks.com/help/releases/R2015b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1
http://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwgpa6-1
http://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwgpa6-1

 Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

5-47

http://www.mathworks.com/support/bugreports/

R2015a
Version: 6.8

New Features

Compatibility Considerations

R2015a

Code Generation from MATLAB Code

Indent style and size control for generated C/C++ code

You can control the indent style and size in C/C++ code generated from MATLAB code.

You can specify the K&R indent style or the Allman indent style. The K&R style places
the opening brace of a control statement on the same line as the control statement. The
Allman style places the opening brace on its own line at the same indentation level as the
control statement.

Indent size is the number of characters per indentation level.

To specify the indent style and size using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate
arrow .

2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Indent style to K&R or Allman.
5 On the All Settings tab, under Advanced, set Indent size to an integer from 2 to

8.

To specify the indent style and size using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the IndentStyle property to 'K&R' or 'Allman'. For example:

cfg.IndentStyle = 'Allman';

3 Set the IndentSize property to an integer from 2 to 8. For example:

6-2

 Code Generation from MATLAB Code

cfg.IndentSize = 4;

See Specify Indent Style for C/C++ Code.

Improved MISRA-C compliance for bitwise operations on signed integers

In previous releases, MATLAB Coder replaced multiplication by powers of two with
signed left bitwise shifts. In R2015a, to increase the likelihood of compliance with MISRA
C, you can disable this replacement. MISRA® rule 12.7 does not allow bitwise operations
on signed integers.

To specify that MATLAB Coder not replace multiplication by powers of two with signed
left bitwise shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the
Generate arrow .

2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Use signed shift left for fixed-point

operations and multiplication by powers of 2 check box.
• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the EnableSignedLeftShifts property to false. For example:

cfg.EnableSignedLeftShifts = false;

See Control Signed Left Shifts in Generated Code.

6-3

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/specify-indentation-style-and-size-for-cc-code.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/control-signed-left-shifts-in-generated-code.html

R2015a

Improved MISRA-C type cast compliance

You can specify the casting mode that MATLAB Coder uses for data type casts in the
generated C/C++ code. You can specify these modes:

Casting Mode Description

Nominal Nominal casting mode is the default
casting mode. The generated C/C++ code
uses the default C compiler data type
casting. When you do not have special data
type information requirements, choose this
option.

Standards Compliant Generated C/C++ code has data type
casts that conform to MISRA standards.
The MISRA data type casting mode
eliminates common MISRA standard
violations, including address arithmetic
and assignment. It reduces 10.1, 10.2, 10.3,
and 10.4 violations.

Explicit Generated C/C++ code has explicit data
type casts. Explicit data type casts provide
information about the amount of memory
that the variable uses and the level
of precision for calculations using the
variable.

To specify the casting mode using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate
arrow .

2 Click More Settings.
3 On the All Settings tab, under Advanced, set Casting mode to Nominal,

Standards Compliant, or Explicit.

To specify the casting mode using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib', 'ecoder', true); % or dll or exe

6-4

 Code Generation from MATLAB Code

2 Set the CastingMode property to 'Nominal', 'Standards', or 'Explicit'. For
example:

cfg = CastingMode = 'Standard';

See Control Data Type Casts in Generated Code.

6-5

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/control-data-type-casts-in-generated-code.html

R2015a

Model Architecture and Design

AUTOSAR improvements including multi-runnable modeling and code
efficiency

R2015a provides many enhancements to Simulink modeling of AUTOSAR elements and
AUTOSAR code generation. Highlights include:

• AUTOSAR multi-runnable modeling using Simulink rate-based multitasking
• Improved traceability for AUTOSAR RTE implicit read

For more information about AUTOSAR-related enhancements in R2015a, see:

• Under Model Architecture and Design:

• “AUTOSAR multi-runnable modeling using Simulink rate-based multitasking” on
page 6-7

• “Enhanced modeling with AUTOSAR system constants” on page 6-8
• “AUTOSAR CompuMethod enhancements” on page 6-8

• Under Code Generation:

• “Improved traceability for AUTOSAR RTE implicit read” on page 6-15
• “Configurable aliveTimeout value for AUTOSAR ports” on page 6-16
• “AUTOSAR calibration parameter export for COM_AXIS lookup tables” on page

6-16

Combined input/output arguments with function prototype control

In R2015a, the code generator tries to reuse buffers for a pair of model step function
input/output ports assigned the same argument name using function prototype control.
The corresponding inport and outport blocks must have the same data type and sampling
rate. This reuse can eliminate buffers in the generated code.

To configure model step function I/O arguments to allow buffer reuse, use either C
function prototype control or C++ class interface control. For more information, see
Combine Input and Output Arguments in Model Step Interface.

6-6

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1

 Model Architecture and Design

Improved MISRA-C compliance for bitwise operations on signed integers

You can specify that the code generator not replace multiplications by powers of two
with signed bitwise shifts, increasing the likelihood of generating code that is compliant
with MISRA-C. MISRA rule 12.7 does not allow bitwise operations on signed integers.
Previously, the code generator replaced multiplications by powers of two with signed
bitwise shifts.

To specify that the code generator not replace multiplications by power of two with
signed bitwise shifts, in the Configuration Parameters dialog box, on the Code
Generation > Code Style pane, clear Replace multiplications by powers of two with
signed bitwise shifts or set the parameter EnableSignedLeftShifts to off.

To improve MISRA-C compliance for bitwise operations on signed integers, run the
following checks:

• Check for bitwise operations on signed integers - New check to identify blocks that
contain bitwise operations on signed integers.

• Check configuration parameters for MISRA-C:2004 compliance - Enhanced
check that verifies that you cleared Code Generation > Code Style > Replace
multiplications by powers of two with signed bitwise shifts.

AUTOSAR multi-runnable modeling using Simulink rate-based
multitasking

In previous releases, you modeled a multi-runnable AUTOSAR software component
using Simulink function-call subsystems or Simulink Function blocks at the top level of a
model. In R2015a, you can model a multi-runnable AUTOSAR software component using
Simulink rate-based multitasking. Using this approach, you can:

• Create an AUTOSAR software component with multiple periodic runnables in
Simulink.

• Import an AUTOSAR software component with multiple periodic runnables from
arxml into Simulink.

• Migrate an existing rate-based, multitasking Simulink model to the AUTOSAR
target.

For more information, see Multi-Runnable Software Components and Configure Multiple
Runnables Using Rate-Based Multitasking.

6-7

http://www.mathworks.com/help/releases/R2015a/ecoder/ref/code-generation-pane-code-style.html#bumt8oa-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/code-generation-pane-code-style.html#bumt8oa-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/autosar-software-components.html#buryr9d-1
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-multiple-runnables.html#buryp53-1
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-multiple-runnables.html#buryp53-1

R2015a

Compatibility Considerations

Before R2015a, you could not configure a multitasking model for the AUTOSAR target.
If you attempted to import an AUTOSAR software component with multiple periodic
runnables and create a rate-based model (that is, if you invoked arxml.importer method
createComponentAsModel with CreateInternalBehavior set to false), the
importer would:

• Discard all but one runnable and create a rate-based, single-tasking model.
• For each AUTOSAR port, create an inport or outport and related Simulink elements

even if the port was not accessed by the AUTOSAR runnable.

Performing the same import in R2015b produces different results in two respects. The
importer:

• Creates a rate-based, multitasking model, rather than rate-based, single-tasking.
• For each AUTOSAR port, creates an inport or outport and related Simulink elements

only if the port is accessed by an AUTOSAR runnable.

Enhanced modeling with AUTOSAR system constants

In previous releases, you could define AUTOSAR system constants
(SwSystemConstants) in Simulink, but their use was limited to condition formulas
inside variant subsystems and model references. In R2015a, you can directly reference
AUTOSAR system constants in Simulink algorithms. For example, you could reference a
system constant in a Gain block.

For more information, see System Constants and Model AUTOSAR Component Behavior.

AUTOSAR CompuMethod enhancements

R2015a significantly enhances AUTOSAR CompuMethod related workflows in Simulink.
You can:

• Configure the properties of imported AUTOSAR CompuMethods
• Create and configure AUTOSAR CompuMethods in Simulink
• Use externally-defined AUTOSAR CompuMethods
• Use externally-defined AUTOSAR Units

6-8

http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/arxml.importer-class.html
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/model-autosar-component-behavior.html#burhjck-1
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/model-autosar-component-behavior.html

 Model Architecture and Design

For more information, see Configure AUTOSAR CompuMethods.

Preprocessor conditionals for single variant choice

Previously, you could not generate preprocessor conditionals if a variant subsystem in
your model contained a single variant choice.

In R2015a, you can represent an empty subsystem as a variant choice. During code
generation, if the empty variant choice is inactive, the generated code does not contain
the #elif preprocessor conditional. Instead, the active variant choice is enclosed
between a #if and an #endif.

6-9

http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-autosar-compumethods.html

R2015a

Data, Function, and File Definition

Control of Boolean and data type limit identifiers in generated code

In R2015a, if you want to associate the data type limit identifiers with the data type
names, you can use command-line parameters to replace these default data type limit
identifiers:

• MAX_int8_T

• MAX_int16_T

• MAX_int32_T

• MAX_uint8_T

• MAX_uint16_T

• MAX_uint32_T

• MIN_int8_T

• MIN_int16_T

• MIN_int32_T

You can also use command-line parameters to:

• Replace the default true and false Boolean identifiers.
• Import a header file with the Boolean and data type limit identifier definitions.

For more information, see Specify Boolean and Data Type Limit Identifiers.

Names of built-in storage classes reserved

You can no longer define custom storage classes with the same name as the built-in
storage classes Auto, SimulinkGlobal, ExportedGlobal, ImportedExtern, and
ImportedExternPointer. The Custom Storage Class Designer now fails validation of
custom storage classes that have these names.

Compatibility Considerations

If you previously defined custom storage classes with the same name as the built-in
storage classes, MATLAB returns an error when you try to create data objects that use

6-10

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/customize-boolean-and-data-type-limit-identifiers.html

 Data, Function, and File Definition

any of the custom storage classes defined in the affected package. If you try to load such
data objects from a MAT-file, the objects do not load successfully.

To resolve these compatibility issues:

1 Rename the affected custom storage classes.
2 Update your MATLAB code to use the new names.
3 Recover affected data objects from existing MAT-files.

To recover affected data objects from existing MAT-files:

1 Start a prior release of MATLAB that uses the affected custom storage classes.
2 Load the MAT-files.
3 Use the function matlab.io.saveVariablesToScript to generate a MATLAB

script that defines the affected data objects.
4 Manually update the generated script with the new names of your custom storage

classes.
5 In release R2015a or later of MATLAB, rename the affected custom storage classes.
6 Run the generated script in release R2015a or later of MATLAB.

6-11

R2015a

Code Generation

Simplified Code Replacement Library specification plus more
replacements involving integer operations

Simplified Code Replacement Library specification

R2015a introduces a simpler approach to defining code replacement table entries
programmatically. This approach significantly reduces the amount of code that you write.
Consider using this approach if both of the following conditions apply:

• The workflow that you use for defining mappings involves copying, pasting, and
editing existing mappings.

• You prefer not to use the Code Replacement Tool to create an initial mapping
definition.

To use the approach, specify conceptual and implementation information for a table entry
as detailed string specifications in a call to the function createCRLEntry.

This approach for defining mappings for code replacement table entries does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building

information)
• Semaphore and mutex function replacements

For more information, see createCRLEntry and Define Code Replacement Mappings.

More replacements involving integer operations

As of R2015a, code replacement opportunities have been improved for the following
binary-point scaling operations. To increase match opportunities, the code generator
applies equivalent scaling to inputs before performing the stored integer operation.
However, input scaling occurs only if a match exists and the code generator is able to
apply the replacement for the stored integer operation.

6-12

http://www.mathworks.com/help/releases/R2015a/ecoder/ref/createcrlentry.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/createcrlentry.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/define-code-replacement-mappings-sc.html

 Code Generation

Operator Key Scalar, Vector,
Matrix Support

Real, Complex
Support

Addition (+) RTW_OP_ADD Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Scalar
Vector
Matrix

Real
Complex

Multiplication (*) RTW_OP_MUL Scalar Real
Division (/) RTW_OP_DIV Scalar Real
Element-wise matrix
multiplication (.*)

RTW_OP_ELEM_MUL Vector
Matrix

Real

Improved readability for shared header file 'rtwtypes.h'

To improve code readability and reduce code review cost, in the rtwtypes.h file, the
software does not generate the following definitions:

• The preprocessor directive #define __TMWTYPES__. The removal of this
preprocessor directive prevents the inclusion of tmwtypes.h, making rtwtypes.h
the single source of type definitions.

• Definitions for zero-crossing detection in triggered subsystems. For example:

#ifndef __ZERO_CROSSING_TYPES_H__

#define __ZERO_CROSSING_TYPES_H__

/* Trigger directions: falling, either, and rising */

typedef enum {

 FALLING_ZERO_CROSSING = -1,

 ANY_ZERO_CROSSING = 0,

 RISING_ZERO_CROSSING = 1

} ZCDirection;

/* Previous state of a trigger signal */

...

#endif

Models containing triggered subsystems require zero-crossing definitions when the
trigger is rising, falling, or either. In R2015a, the software generates these

6-13

R2015a

definitions in a separate file called zero_crossing_types.h. The software creates
the file only if the model requires the file.

Compatibility Considerations

Because of the removal of the #define __TMWTYPES__ directive, the rtwtypes.h file
generated using R2015a might not be compatible with code that you generate using
a previous release. For example, in some circumstances, the generated code from an
older release might include tmwtypes.h after rtwtypes.h. This code does not compile
without the #define __TMWTYPES__ directive.

If your build process uses custom code that includes the header file tmwtypes.h instead
of rtwtypes.h, you might observe a compiler error that indicates a redefined type.

To avoid this error, in the custom code, replace:

#include “tmwtypes.h”

with:

#include “rtwtypes.h”

If you use the mex command to compile custom code for an S-function, include
tmwtypes.h for the mex compilation and rtwtypes.h for the code generation
compilation:

#ifdef MATLAB_MEX_FILE

#include “tmwtypes.h”

#else

#include “rtwtypes.h”

#endif

Alternatively, before generating code for your model, configure the model for backward
compatibility by setting the parameter InferredTypesCompatibility to on.

set_param(model, 'InferredTypesCompatibility', 'on')

When you enable backward compatibility, the code generator creates the preprocessor
directive #define __TMWTYPES__ inside model.h.

New and enhanced Model Advisor checks for MISRA-C compliance

To improve MISRA-C compliance, you can run the following Model Advisor checks:

6-14

 Code Generation

Check New or
Enhanced

Description Addresses
MISRA-C Rule
Numbers

Check for bitwise
operations on signed
integers

New Identifies blocks that contain
bitwise operations on signed
integers.

12.7

Check configuration
parameters for MISRA-
C:2004 compliance

Enhanced Now verifies that you
cleared Code Generation
> Code Style > Replace
multiplications by powers
of two with signed bitwise
shifts

12.7

Check for blocks not
recommended for MISRA-
C:2004 compliance

Enhanced Now identifies Lookup Table
blocks using cubic spline
interpolation or extrapolation
methods.

11.4 and 11.5

Improved traceability for AUTOSAR RTE implicit read

AUTOSAR code generation now generates more traceable and readable code for a root
inport that models an AUTOSAR RTE implicit read, especially when the inport data type
is a matrix.

For example, consider root inport In1 the following model:

In R2014b, the generated code introduces a hidden Signal Conversion block:
void Runnable_Step(void)

{

const real_T *rtb_TmpSignalConversionAtIn1Out;

real_T tmp[9];

int32_T

/* SignalConversion: '<Root>/TmpSignal ConversionAtIn1Outport1' incorporate

Inport: '<Root>/In1 */

rtb_TmpSignalConversionAtIn1Out = Rte_IRead_Runnable_Step_Input_Element0();

6-15

http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1

R2015a

 /* Sum: '<Root>/Add' incorporates:

 * Constant: '<Root>/Constant'

 */

 for (i = 0; i < 9; i++) {

 tmp[i] = rtb_TmpSignalConversionAtIn1Out [i] + 1.0;

 }

 ...

 Rte_IWrite_Runnable_Step_Output_Output(tmp);

}

In R2015a, the generated code is traceable and more readable. A hyperlink is generated
for <Root>/In1.
void Runnable_Step(void)

{

const real_T *tmp_In1;

real_T tmp[9];

int32_T i;

 /* Inport: '<Root>/In1' */

 tmp_In1 = Rte_IRead_Runnable_Step_Input_Element0();

 /* Sum: '<Root>/Add' incorporates:

 * Constant: '<Root>/Constant'

 */

 for (i = 0; i < 9; i++) {

 tmp[i] = rtb_tmp_In1[i] + 1.0;

 }

 ...

 Rte_IWrite_Runnable_Step_Output_Output(tmp);

}

Configurable aliveTimeout value for AUTOSAR ports

In AUTOSAR applications, the aliveTimeout value for an AUTOSAR port specifies
the amount of time in seconds after which the AUTOSAR software component must
be notified if the port has not received data according to a specified timing description.
In previous releases, arxml export generated a fixed aliveTimeout value of 60 for
each AUTOSAR port, without providing a way to modify the aliveTimeout value in
Simulink.

The software now allows you to configure an aliveTimeout value that subsequent
arxml exports generate for each AUTOSAR port. For more information, see Configure
AUTOSAR Port aliveTimeout Value.

AUTOSAR calibration parameter export for COM_AXIS lookup tables

For shared axis (COM_AXIS) lookup tables, AUTOSAR code generation now exports
arxml that supports run-time calibration of lookup table parameters. To configure a

6-16

http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-default-alivetimeout-value-for-autosar-ports.html
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-default-alivetimeout-value-for-autosar-ports.html

 Code Generation

lookup table for run-time calibration, add an n-D Lookup Table block to your model
and configure it for COM_AXIS data. For table data and axis data that you want to
tune or manipulate at run-time, reference AUTOSAR calibration parameters. For more
information, see Calibration Parameters for COM_AXIS Lookup Tables.

Fixed-point scaling information in Code Interface Report

Fixed-point scaling information is added to the code generation report in the Code
Interface Report section. Better accessibility to this information makes it easier for you
to integrate your code with generated code containing fixed-point data types. Each fixed-
point entry in a report table has a value in the new Scaling column giving its data type
and fraction length using Simulink fixed-point data type notation. Here is an example of
fixed-point data representations in the Outports table.

You must have a Fixed-Point Designer™ license to see fixed-point scaling information in
the report. For more information on how scaling is represented in the table, see Fixed-
Point Data Type and Scaling Notation.

Unsigned integer minimum data limit identifiers

The following unsigned integer minimum data limit identifiers are no longer defined in
rtwtypes.h:

• MIN_uint8_T

• MIN_uint16_T

• MIN_uint32_T

• MIN_uint64_T

Previously, the unsigned integer minimum data limit identifiers defined in rtwtypes.h
were potentially not used in the generated code:

6-17

http://www.mathworks.com/help/releases/R2015a/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/calibration-parameters.html#burrq1_-1
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-numbers.html#br4g2lj-1
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-numbers.html#br4g2lj-1

R2015a

• Standard C header files do not provide an unsigned integer minimum data limit
constant.

• In most instances, the code generator did not replace 0 with the unsigned integer
minimum limit identifier.

Compatibility Considerations

If you previously used unsigned integer minimum data limit identifiers in custom code,
for example in an S-Function, replace the limit with 0.

Default iteration variable data type

The default data type for iteration variables in the generated code is a 32-bit integer.
Previously, the default data type was int with an unspecified bit size.

For example, consider the following model.

The code generator produced this code in R2014b:

 {

 int_T i;

 for (i = 0; i < 16; i++) {

 test1_2a_Y.Out7[i].re = (0L);

 test1_2a_Y.Out7[i].im = (0L);

 }

 }

The code generator produces this code in R2015a:

 {

 int32_T i;

 for (i = 0; i < 16; i++) {

6-18

 Code Generation

 test1_2a_Y.Out7[i].re = (0L);

 test1_2a_Y.Out7[i].im = (0L);

 }

 }

6-19

R2015a

Deployment

Code Replacement Viewer enhanced

• MATLAB command for invoking the Code Replacement Viewer is renamed from
RTW.viewTfl to crviewer.

• The trace information for misses that occur during the match process is reformatted
as a table.

For more information, see Verify Code Replacements.

Model configuration parameter considered for division operator code
replacements

When determining match criteria for division operator code replacement entries, the
code generator uses model configuration parameter Signed integer division rounds
to (ProdIntDivRoundTo) to determine equivalent rounding modes. For example,
assume that Signed integer division rounds to is set to Floor. The code generator
matches model division operations with integer rounding modes set to simplest or floor to
division operator code replacement entries with the Rounding mode (RoundingModes)
parameter set to Simplest or Floor.

Lookup table algorithm parameter specification enhancements

R2015a introduces enhancements for setting algorithm parameters for lookup table
function code replacement table entries.

• From the Code Replacement Tool, you can specify multiple values for an algorithm
parameter.

• Programming interface improvements include:

• Algorithm parameter set objects for discovering and managing algorithm
parameter settings.

• For a given lookup table function, default settings for unchanged algorithm
parameters.

• Validation of syntax, parameter names, and values in parameter assignment
statements.

6-20

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/verify-code-replacements-sc.html

 Deployment

• getAlgorithmParameters function for examining the algorithm parameter settings
for a lookup table function code replacement table entry.

• setAlgorithmParameters function for setting the algorithm parameters for a
lookup table function code replacement table entry.

For more information, see getAlgorithmParameters, setAlgorithmParameters, and
Lookup Table Function Code Replacement.

Header file for Basic Linear Algebra Subroutine (BLAS) multiplication
function code replacement example changed

The header file for the Basic Linear Algebra Subroutine (BLAS) multiplication function
code replacement example changed from blascompat32.h to blascompat32_crl.h.
The associated include path for this header file changed to matlab/toolbox/rtw/rtwdemos/
crl_demo. For more information, see “Improved readability for shared header file
'rtwtypes.h'” on page 6-13.

Code replacement detection of overflow and rounding mode equivalence

As of R2015a, the code replacement software detects overflow and rounding mode
equivalence for real scalar multiplication and division operations. When an operation
does not overflow, based on input and output data types, a match occurs for code
replacement table entries with the saturation mode set to Wrap on Overflow
(RTW_WRAP_ON_OVERFLOW). Similarly, if the code replacement software detects
equivalent rounding modes, a match occurs.

Feature being removed in a future release

The Filter Design and Analysis Tool option to target the Code Composer Studio™ IDE
will be removed in a future release. The Filter Design and Analysis Tool is available with
Signal Processing Toolbox™.

6-21

http://www.mathworks.com/help/releases/R2015a/ecoder/ref/getalgorithmparameters.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/setalgorithmparameters.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/getalgorithmparameters.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ref/setalgorithmparameters.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/lookup-table-function-code-replacement-sc.html

R2015a

Performance

More efficient code involving model references, unit delays, and global
data references

Reusable custom storage class for Model block input/output ports

Previously, if a pair of root-level model input and output signals used the same
Reusable storage class specification, the code generator could reuse the root I/O signals
in the generated code. In R2015a, this optimization extends to Model block I/O signals.
The code generator tries to reuse buffers for a pair of Model block I/O signals with the
same Reusable storage class specification. This reuse can eliminate buffers in the
generated code.

The input/output signals must have the same data types and sampling rates. This
optimization does not apply to conditional output ports.

For more information on how to configure your model to take advantage of this
optimization, see Buffer Reuse for Model Block Boundary and Unit Delay.

Reuse input, output, and state of Unit Delay block

If any of the following conditions exist, the code generator tries to reuse the input,
output, and state of a Unit Delay block:

• In the Configuration Parameters dialog box, on the Optimizations > Signals and
Parameters pane, you select Use global to hold temporary results from the
Optimize global data access list.

• You use the same Reusable custom storage class specification for a pair of input and
state arguments or a pair of output and state arguments of a Unit Delay block.

• You use a Reusable custom storage class specification for a state argument of a Unit
Delay block.

The reusable input, output, and state arguments must have the same data types and
sampling rates. This optimization can reduce the number of global variables. For
example, consider the following model.

6-22

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

 Performance

In R2014b, the code generator produces the following code:

DW_reuse_ex_T reuse_ex_DW;

void reuse_ex_step(void)

{

 reuse_ex_Y.Out2 = reuse_ex_P.Gain1_Gain * reuse_ex_DW.UnitDelay1_DSTATE;

 reuse_ex_Subsystem();

 reuse_ex_DW.UnitDelay1_DSTATE = reuse_ex_B.Gain2;

}

In R2015a, the code generator produces the following code:

void reuse_ex_step(void)

{

 reuse_ex_Y.Out2 = reuse_ex_P.Gain1_Gain * reuse_ex_B.Gain2;

 reuse_ex_Subsystem();

}

For more information on how to configure your model to use this optimization, see Buffer
Reuse for Model Block Boundary and Unit Delay.

Enhanced variable reuse optimizations

The code generator has improved analysis of data copies to provide more variables for
reuse and more consistent variable reuse behavior. These enhancements result in:

• Reduced data copies, code size, and RAM consumption.
• Improved execution speed.

For example, consider the following model.

6-23

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

R2015a

The code generator produced this code in R2014b:

int32_T i;

/* Sum: '<Root>/Sum' incorporates:

* Constant: '<Root>/Increment'

* UnitDelay: '<Root>/Unit_Delay'

*/

outc = (uint8_T)(outc + 1);

/* Assignment: '<Root>/Assignment' incorporates:

* Inport: '<Root>/ina'

* UnitDelay: '<Root>/Unit_Delay1'

*/

for (i = 0; i < 100; i++) {

 outa[i] = mg909420_DWork.Unit_Delay1_DSTATE[i];

}

6-24

 Performance

outa[outc] = ina;

/* End of Assignment: '<Root>/Assignment' */

/* Update for UnitDelay: '<Root>/Unit_Delay1' */

for (i = 0; i < 100; i++) {

 mg909420_DWork.Unit_Delay1_DSTATE[i] = outa[i];

}

The code generator produces this code in R2015a:

outc = (uint8_T)(outc + 1);

/* Assignment: '<Root>/Assignment' incorporates:

* Inport: '<Root>/ina'

*/

outa[outc] = ina;

Strategic caching of global variable references

The code generator replaces global variables used for temporary storage with local
variables. This replacement enables expression folding and other optimizations available
for local variables, resulting in:

• Reduced data copies, code size, and RAM consumption.
• Improved execution speed.

For example, in the following model, the signal from a Constant block feeds into an
Outport block. On the Optimization > Signals and Parameters pane, the Optimize
global data access parameter is set to Minimize global data access.

6-25

R2015a

The code generator produced this code in R2014b:

/* Outport: '<Root>/Out3' incorporates:

* Constant: '<Root>/B3'

*/

mg1003222_Y.Out3 = K + 1.0;

mg1003222_Y.Out3 = sin(mg1003222_Y.Out3);

The code generator produces this code in R2015a:

/* Outport: '<Root>/Out3' incorporates:

* Constant: '<Root>/B3'

*/

mg1003222_Y.Out3 = sin(K + 1.0);

Enhanced global variable localization optimizations

The code generator has more information to determine which global variables it can
replace with local variables. It can also update function interfaces to pass these local
variables. With these enhancements, the code generator can:

6-26

 Performance

• Enable more optimizations for local variables.
• Potentially reduce the number and use of global variables.

For example, consider the following Stateflow chart.

The code generator produced this code in R2014b:

/* Function for Chart: '<Root>/Chart' */

static real_T test_f_fcn(void)

{

 /* MATLAB Function 'f_fcn': '<S1>:5' */

 /* Graphical Function 'f_fcn': '<S1>:5' */

 /* '<S1>:10:1' */

 test_g_fcn();

 /* '<S1>:10:1' */

 test_DW.data++;

 /* '<S1>:10:1' */

 return test_DW.data;

}

…

/* Function for Chart: '<Root>/Chart' */

static void test_g_fcn(void)

{

 /* MATLAB Function 'g_fcn': '<S1>:13' */

 /* Graphical Function 'g_fcn': '<S1>:13' */

 /* '<S1>:12:1' */

6-27

R2015a

 test_DW.data = 1.0;

}

The code generator produces this code in R2015a:

/* Function for Chart:'<Root>/Chart'*/

static real_T test_f_fcn(void)

{

 real_T out;

 real_T data;

 /* MATLAB Function 'f_fcn': '<S1>:5'*/

 /* Graphical Function 'f_fcn': '<S1>:5'*/

 /*'<S1>:10:1'*/

 test_g_fcn(&data);

 /*'<S1>:10:1'*/

 out = data + 1.0;

 /*'<S1>:10:1'*/

 return out;

}

…

/* Function for Chart: '<Root>/Chart' */

static void test_g_fcn(real_T *data)

{

 /* MATLAB Function 'g_fcn': '<S1>:13' */

 /* Graphical Function 'g_fcn': '<S1>:13' */

 /* '<S1>:12:1' */

 *data = 1.0;

}

Conditional compilation of Data Store Memory block memory definition
and declaration

When a Data Store Memory block has a non-auto storage class and variant subsystems
reference the block, the code conditionally compiles the definition and declaration of the
block memory. To compile, the code uses the preprocessor conditions associated with
the variant subsystems. Previously, the code did not conditionally compile the definition
and declaration of the block memory, resulting in the declaration and definition of global
variables that the code potentially did not use.

For example, consider the following model.

6-28

 Performance

In R2014b, the code generator produces this code:

volatile real_T dsm_var1;

void dsm_variants_ex_initialize(void)

{

 /* custom states */

 dsm_var1 = 0.0;

}

In R2015a, the code generator produces code using preprocessor conditionals:

#if VARI1 == USE

 volatile real_T dsm_var1;

#endif /* VARI1 == USE */

void dsm_variants_ex_initialize(void)

{

 /* custom states */

 #if VARI1 == USE

 dsm_var1 = 0.0;

 #endif /* VARI1 == USE */

}

6-29

R2015a

Ternary Boolean expressions transformed into assignment statements

In R2015a, the code generator removes the conditional part of a ternary Boolean
expression, leaving an assignment statement. An assignment statement in place of a
ternary Boolean expression improves execution speed and reduces RAM/ROM.

Observe the following lines of code generated in R2014b:

uint32_T a;

uint32_T b;

a = (a<b)?1U:0U;

Compare the same lines of code generated in R2015a:

uint32_T a;

uint32_T b;

a = uint32_T(a<b);

6-30

 Verification

Verification

SIL/PIL for protected models and SIL source code debugging using
Microsoft Visual Studio Express

• “SIL/PIL for protected models” on page 6-31
• “SIL source code debugging using Microsoft Visual Studio Express” on page 6-32

SIL/PIL for protected models

To verify the behavior of code generated from protected models, use Model block
software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations.

This feature supports:

• Generated code with standalone (Top model) and model reference (Model
reference) code interfaces.

• AUTOSAR models, including packaged ARXML files.
• Execution-time profiling of task entry-point functions.

For more information, see:

• Create a Protected Model
• Simulink.ModelReference.protect

• Referenced Model Simulation Using SIL or PIL

6-31

http://www.mathworks.com/help/releases/R2015a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html
http://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.modelreference.protect.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/referenced-model-simulation-using-sil-or-pil.html

R2015a

SIL source code debugging using Microsoft Visual Studio Express

Embedded Coder supports Microsoft Visual Studio® Express 2013 for Windows® Desktop
for debugging code during software-in-the-loop (SIL) simulations. To specify Microsoft
Visual Studio Express for SIL debugging:

• In MATLAB, select the Microsoft Windows SDK 7.1 compiler.
• On the Configuration Parameters > Code Generation > Verification pane,

select the Enable source-level debugging for SIL simulations check box.

For more information, see Debug Code During SIL Simulations.

Model block SIL/PIL parameter renamed

The following SIL/PIL changes apply to the Model block:

• The command-line parameter CodeUnderTest is renamed CodeInterface.
• In the Function Block Parameters dialog box, the field Code under test is renamed

Code interface.

ERT S-Function block no longer supported for AUTOSAR

As of R2015a, to verify code generated from AUTOSAR software component, use the SIL
block.

For more information, see Verify AUTOSAR C Code with SIL and PIL.

Compatibility Considerations

R2014a introduced the ability to switch between two SIL block behaviors—legacy (ERT
S-function) and unified (SIL block). The software also indicated that ERT S-function
support for code verification would be removed in a future release. Starting in R2015a,
for AUTOSAR code generation, use the SIL block.

SIL/PIL support for replacing boolean data type with int8

You can replace the boolean built-in data type with an integer type in generated code.
Before R2015a, SIL and PIL execution supported data type replacement of boolean

6-32

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/debug-code-during-sil-simulations.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/model.html
http://www.mathworks.com/help/releases/R2015a/ecoder/autosar/verifying-the-autosar-code-with-sil-and-pil-simulations.html

 Verification

with uint8. As of R2015a, SIL and PIL execution supports replacement of boolean with
uint8 or int8.

For more information, see Replace boolean with Specific Integer Data Type and Data
Type Replacement.

SIL/PIL support for generated access methods for C++ model class root-
level I/O signals

In the Configuration Parameters dialog box, on the Code Generation > Interface
pane, the External I/O access parameter (GenerateExternalIOAccessMethods)
specifies whether to generate access methods for root-level I/O signals for a C++ model
class. Before R2015a, SIL and PIL simulations required that you set this parameter to
None. As of R2015a, you can run SIL and PIL simulations for code that you generate
with the parameter set to Method or Inlined method. These settings cause the code
generator to produce noninlined or inlined access methods for the root-level I/O signals
for the class.

For more information, see External I/O access and Configure Step Method for Model
Class.

6-33

http://www.mathworks.com/help/releases/R2015a/ecoder/ug/replace-boolean-with-specific-integer-data-type.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/data-type-replacement.html
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/data-type-replacement.html
http://www.mathworks.com/help/releases/R2015a/rtw/ref/code-generation-pane-interface.html#br55ax2-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1
http://www.mathworks.com/help/releases/R2015a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1

R2015a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

6-34

http://www.mathworks.com/support/bugreports/

R2014b
Version: 6.7

New Features

Bug Fixes

Compatibility Considerations

R2014b

Code Generation from MATLAB Code

Processor-in-the-loop (PIL) verification and execution profiling for MATLAB
code

Use processor-in-the-loop (PIL) execution to verify code that you intend to deploy in
production. PIL execution involves cross-compiling and running library object code on
your target processor through a MATLAB PIL interface. You can reuse test vectors
developed for your MATLAB functions to verify the numerical behavior of library code.

Before running PIL executions on your target hardware, specify a connectivity
configuration for your target. See PIL Customization for Target Environment and Create
PIL Target Connectivity Configuration.

You can run a PIL execution:

• Using the MATLAB Coder Project Interface. See Processor-in-the-Loop Execution
Through Project Interface.

• At the command line. See Processor-in-the-Loop Execution From Command Line.

Through software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution, you can
produce execution time profiles of code generated from entry-point functions. Use these
profiles to determine:

• Whether the generated code meets real-time requirements of your target hardware.
• Which entry-point functions require performance improvement.

For more information, see Execution Time Profiling.

Software-in-the-loop verification improvements for MATLAB Coder

The following table lists software-in-the-loop (SIL) execution improvements.

Feature R2014b support Previous support

Code debugging during
SIL execution

Linux: GNU® Data Display
Debugger (DDD)

Windows: Microsoft Visual
Studio debugger

7-2

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/target-connectivity-configurations-for-pil.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-through-project-interface.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-through-project-interface.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-from-the-command-line.html
http://www.mathworks.com/help/releases/R2014b/ecoder/execution-time-profiling.html

 Code Generation from MATLAB Code

Feature R2014b support Previous support

Windows: Microsoft Visual
Studio debugger

Interface
types

Multiple
entry points

Yes No

Size Static
variable-size
arrays

Yes Limited to function
arguments that were fixed-
size structures with variable-
size fields.

For more information, see:

• Code Debugging During SIL Execution
• SIL/PIL Execution Support and Limitations

Additional options for custom banners and comments in C and C++ code
generated from MATLAB code

In a code generation template (CGT) file, you can now specify the following:

• Custom banners for shared utility functions
• Custom comments before individual code sections such as Include Files and

Function Declarations

• doxygen style comments

The style attribute options for doxygen style comments are doxygen and
doxygen_qt. The TargetLang and CommentStyle code configuration object
properties determine the use of C or C++ style comments with the doxygen style
comments.

doxygen with C style comments

/**

 * multiple line comments

 * second line

 */

doxygen with C++ style comments

7-3

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/code-debugging-during-sil-execution.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/sil-execution-support-and-limitations.html

R2014b

///

/// multiple line comments

/// second line

///

doxygen_qt with C style comments

/*!

 * multiple line comments

 * second line

 */

doxygen_qt with C++ style comments

//!

//! multiple line comments

//! second line

//!

See Code Generation Template (CGT) Files for MATLAB.

Highlighting of potential data type issues in code generation reports

When you generate standalone code from MATLAB code, you now have the option to
highlight potential data type issues in the code generation report. The report highlights
MATLAB code that results in single-precision and double-precision operations in
the generated C/C++ code. If you have a Fixed-Point Designer license, the report
also highlights expressions in the MATLAB code that result in expensive fixed-point
operations in the generated code. The expensive fixed-point operations check identifies
optimization opportunities for fixed-point code. It highlights expressions in the MATLAB
code that result in cumbersome multiplication and division, and expensive rounding in
generated C/C++ code.

The following example report highlights MATLAB code that results in double-precision
operations in the generated C code.

7-4

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/code-generation-template-cgt-files-for-matlab-code-generation.html

 Code Generation from MATLAB Code

The checks are disabled by default.

To enable the checks in a project, on the Debugging tab, select the Always create a
code generation report and Highlight potential data types issues check boxes.

To enable the checks at the command line:

1 Create a configuration object to generate standalone C/C++ code for an embedded
target. For example:

cfg = coder.config('lib','ecoder',true);

2 Set the HighlightPotentialDataTypeIssues property to true:

cfg.HighlightPotentialDataTypeIssues = true;

7-5

R2014b

See Highlight Potential Data Type Issues in a Report and Find Potential Data Type
Issues in Generated Code.

If you have a Fixed-Point Designer license, you have the option to highlight potential
data type issues in the generated HTML report that is available after the fixed-point
type validation step of the fixed-point conversion process. An Embedded Coder license is
not required to highlight potential data types issues in this report. The report highlights
MATLAB code that requires single-precision, double-precision, or expensive fixed-point
operations.

The following example report highlights MATLAB code that requires expensive fixed-
point operations.

The checks are disabled by default. To enable the checks in a project:

7-6

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/highlight-potential-data-type-issues-in-a-report.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-issues-in-generated-code.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-issues-in-generated-code.html

 Code Generation from MATLAB Code

1 In the Fixed-Point Conversion Tool, click Advanced to view the advanced settings.
2 Set Highlight potential data type issues to Yes.

To enable the checks at the command line:

1 Create a floating-point to fixed-point conversion configuration object:

fxptcfg = coder.config('fixpt');

2 Set the HighlightPotentialDataTypeIssues property to true.

fxptcfg.HighlightPotentialDataTypeIssues = true;

See Data Type Issues in Generated Code.

7-7

http://www.mathworks.com/help/releases/R2014b/coder/ug/data-type-issues-in-generated-code.html

R2014b

Model Architecture and Design

AUTOSAR targeting updates including 4.1 ARXML, client/server with
Simulink Functions, multi-instance components, and IFL/IFX libraries

R2014b provides many enhancements to AUTOSAR code generation and Simulink
modeling of AUTOSAR elements. Highlights include:

• Support for AUTOSAR Release 4.1, including:

• AUTOSAR 4.1 (schema version 4.1.1) arxml and C code generation
• AUTOSAR 4.1 initialization events
• AUTOSAR 4.1 provide-require ports

• Ability to model AUTOSAR clients and servers in Simulink, using Simulink Function
and Function Caller blocks.

• Ability to model multi-instance AUTOSAR software components (SWCs) in Simulink,
using the Reusable function setting of the model parameter Code interface
packaging.

• AUTOSAR code replacement library support for:

• Floating-point interpolation (IFL) and fixed-point interpolation (IFX) library
routines.

• Functions that perform a multiplication, and then a division operation in
sequence.

• Addition and subtraction operator replacements for cast-after-operation
algorithms. (For more information, see “Algorithm specification for addition and
subtraction operator replacement” on page 7-28.)

For more information about AUTOSAR-related enhancements in R2014b, see:

• “Support for AUTOSAR Release 4.1” on page 7-16
• “AUTOSAR client and server modeling” on page 7-9
• “Multi-instance AUTOSAR atomic software components” on page 7-17
• Code Replacement for AUTOSAR
• “Support Package for AUTOSAR Standard” on page 7-14
• “AUTOSAR help navigation enhancements” on page 7-15

7-8

http://www.mathworks.com/help/releases/R2014b/simulink/slref/simulinkfunction.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
http://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-interface.html#bt7cuoh-1
http://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-interface.html#bt7cuoh-1
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/code-replacement-for-autosar.html

 Model Architecture and Design

AUTOSAR client and server modeling

Beginning in R2014b, you can model AUTOSAR clients and servers in Simulink for
simulation and code generation.

• Use Simulink Function blocks at the root level of a model to model AUTOSAR servers.
• Use Function Caller blocks to model AUTOSAR client invocations.
• Use the top-model export-functions modeling style to create interconnected Simulink

functions, function-calls, and root model inports and outports.

For more information, see Client-Server Interface and Configure AUTOSAR Client-
Server Communication.

Global From and Goto blocks for AUTOSAR modeling

Beginning in R2014b, you can use global From and Goto blocks in a model configured
for AUTOSAR. With From and Goto blocks, you can pass a signal from one block to
another without actually connecting them. You can model AUTOSAR runnables with
more flexibility and cleaner separation of components and interfaces.

AUTOSAR IRV branch from outport signal allowed outside runnable

In previous releases, if you wanted to branch an AUTOSAR runnable output signal to an
AUTOSAR inter-runnable variable (IRV) and a Simulink model root outport, AUTOSAR
code generation supported only branching inside the runnable.

7-9

http://www.mathworks.com/help/releases/R2014b/simulink/slref/simulinkfunction.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar-communication.html#bsa24_3-7
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-client-server-communication.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-client-server-communication.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/from.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/goto.html

R2014b

Beginning in R2014b, AUTOSAR code generation supports branching outside the
runnable. This modeling pattern can potentially generate more efficient C code, for
example, with fewer global variables and fewer block I/O buffers.

The following guidelines and constraints apply to the new modeling pattern:

7-10

 Model Architecture and Design

• You can branch a runnable output signal to only one root outport outside a runnable
boundary.

• When a runnable output signal branches to an IRV and a root outport outside the
runnable subsystem:

• Only Goto and From blocks are allowed between the source and the destination of
the signal.

• You cannot conditionally write to the IRV or root outport.
• When a runnable output signal does not branch, only Goto/From and Merge blocks are

allowed between the source and the destination of the signal.

7-11

R2014b

Data, Function, and File Definition

Constant sample time limitation for AUTOSAR models

Previously, for models using the AUTOSAR target, the compiler reported a warning
if you configured a root-level Outport block to inherit a constant sample time from its
sources. The compiler then set the sample time of the root-level Outport block to the
fundamental rate of the model. In R2014b, this warning becomes an error.

Iteration variable in For Iterator block uses signal name

The code generator allows use of the signal name as part of the iteration variable
name in the For Iterator block. Using the signal name increases the traceability of the
generated code.

You can control the name of the iteration variable. Specify the setting for Local
temporary variables on the Code Generation > Symbols pane. The signal name is
the $N part of the variable name.

Previously, the code generator used a default name, incorporating the name of the
system hierarchy for the iteration variable.

See also For Iterator and Local temporary variables.

Data type replacement specification can be used across models

When you specify data type replacement names for a model, the code generator can use
the replacement types to generate shared functions and constants. You save RAM/ROM
space and the code generator can use the user-defined types consistently.

For more information, see Data Type Replacement.

Definition file for grouped custom storage classes

When defining custom storage classes of the Struct or BitField type, you can now
specify the definition file for exported grouped custom storage classes.

7-12

http://www.mathworks.com/help/releases/R2014b/simulink/slref/foriterator.html
http://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-symbols.html#bq9i3s4-1
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-replacement.html

 Data, Function, and File Definition

Type definition location for custom storage classes

Previously, the type definitions for data that used the Struct or BitField custom
storage class were generated into the model_types.h header file. Now, those type
definitions are generated into the same header file as that containing the data
declarations (model.h, by default). If you specify a header file for such grouped custom
storage classes, then both the type definitions and the data declarations are generated
into that specified file.

GetFunction and SetFunction included in checks for identifier clash

Simulink now includes the GetFunction and SetFunction properties of custom
storage class attributes during checks for identifier name clashes in data objects.
Previously, these properties were ignored during identifier clash detection.

7-13

R2014b

Code Generation

Enhanced reporting of eliminated blocks

In R2014b, the Eliminated/Virtual Blocks section of the traceability report includes
a more accurate list of blocks eliminated by optimization. For these blocks, the code can
now identify if the block was eliminated by a code generation optimization or by a block
reduction. The comments for these blocks are more informative and include the following
changes:

• Previously, a block eliminated from a model during code generation was reported
as Not traceable. In R2014b, the block comment is Eliminated by code
generation optimization.

• Previously, a block eliminated by Simulink block reduction was reported as Not
traceable. In R2014b, the block comment is the same optimization information
available in the model.h file when you select Code Generation > Comments >
Show eliminated blocks .

• Previously, a block eliminated by code generation or block reduction was reported
as Not traceable in the Model Optimization Rationale column of a generated
traceability matrix. In R2014b, a block eliminated by code generation has
CodeGenerationReducedBlock in the Model Optimization Rationale column. A
block eliminated by block reduction has SimulationReducedBlock in this column.

For more information on traceability reports, see Customize Traceability Reports.

Improved MISRA-C type cast compliance

You can choose how the code generator specifies data type casts in the generated code,
including an option to choose MISRA data type cast compliance. The MISRA data type
casting eliminates common MISRA standard violations, including address arithmetic and
assignment. It reduces 10.1, 10.2, 10.3, and 10.4 violations.

You can also choose data type casting that is minimal or explicit.

For more information, see Control Cast Expressions in Generated Code.

Support Package for AUTOSAR Standard

Beginning in R2014b, Embedded Coder software provides add-on support for the
AUTOSAR standard via the Embedded Coder Support Package for AUTOSAR

7-14

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/customizing-traceability-reports.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/control-code-style.html#buim0yx-68

 Code Generation

Standard. With the support package installed, you can create and modify an AUTOSAR
configuration for a model, model AUTOSAR elements, and generate ARXML and
AUTOSAR-compatible C code from a model.

To download and install the support package,

1 On the MATLAB Toolstrip, click Add-Ons > Get Hardware Support Packages.
2 Select Install from Internet and click Next.
3 From the list of available support packages, select AUTOSAR Standard.
4 To complete the installation, follow the instructions provided by Support Package

Installer.

For more information, see Support Package Installation.

Compatibility Considerations

AUTOSAR models and scripts that worked without a support package before R2014b
now require Embedded Coder Support Package for AUTOSAR Standard. Install the
support package before working with AUTOSAR models and scripts.

AUTOSAR help navigation enhancements

To make it easier to find AUTOSAR topics within MATLAB documentation, R2014b
introduces the following AUTOSAR documentation enhancements:

• New AUTOSAR landing page in MATLAB Help — Encapsulates the entire Embedded
Coder AUTOSAR workflow.

7-15

http://www.mathworks.com/help/releases/R2014b/matlab/matlab_external/support-package-installation.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar-software-components.html

R2014b

• New Embedded Coder AUTOSAR book in PDF format — Collects AUTOSAR
concepts, examples, how-to topics, and reference material in a PDF file to help
Simulink users learn how to model AUTOSAR components.

Support for AUTOSAR Release 4.1

AUTOSAR 4.1 ARXML and C code generation

The software now supports AUTOSAR Release 4.1 (schema version 4.1.1) for import and
export of arxml files and generation of AUTOSAR-compatible C code.

If you import schema version 4.1.1 arxml code into Simulink, the arxml importer detects
and uses the schema version, and sets the schema version parameter in the model to
4.1.

For information on specifying an AUTOSAR schema version for code generation, see
Select an AUTOSAR Schema.

AUTOSAR 4.1 InitEvent support

Beginning in R2014b, you can model AUTOSAR initialization events (InitEvents),
as defined in AUTOSAR schema version 4.1. You can use an InitEvent to designate
an AUTOSAR runnable as an initialization runnable, and then map an initialization
function to the runnable.

In previous releases, you could use AUTOSAR mode management to set up software
component initialization. For example, you could define a ModeDeclarationGroup
with a mode for setting up and initializing a software component. InitEvent provides a
potentially lighter-weight alternative to the mode-based approach.

If you import arxml code that describes a runnable with an InitEvent, the arxml
importer configures the runnable in Simulink as an initialization runnable.

7-16

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

 Code Generation

Alternatively, you can configure a runnable to be the initialization runnable in Simulink.
For more information, see Configure AUTOSAR Initialization Runnable.

AUTOSAR 4.1 provide-require port support

Beginning in R2014b, you can model AUTOSAR provide-require ports (PRPorts), as
defined in AUTOSAR schema version 4.1. PRPorts are a third type of port, in addition
to provide ports (PPorts) and require ports (RPorts), that can be associated with an
AUTOSAR sender-receiver interface. For example, you can:

• Map a Simulink inport/outport pair to a data element of an AUTOSAR provide
require port. Generated code complies with Simulink and AUTOSAR semantics.

• Import AUTOSAR provide-require ports for sender-receiver interfaces from ARXML
files.

• Export AUTOSAR provide-require ports to ARXML files.

For more information, see Configure AUTOSAR Provide-Require Port.

Multi-instance AUTOSAR atomic software components

In previous releases, AUTOSAR software components (SWCs) modeled in Simulink were
single-instance. Beginning in R2014b, you can model multi-instance AUTOSAR SWCs in
Simulink. For example, you can:

• Map and configure a Simulink model as a multi-instance AUTOSAR SWC, and
validate the configuration.

• Generate C code with reentrant runnable functions and multi-instance RTE API calls.
• Verify AUTOSAR multi-instance C code with SIL and PIL simulations.
• Import and export multi-instance AUTOSAR SWC description XML files.

For more information and limitations, see Multi-Instance Atomic Software Components.

AUTOSAR arxml import and export

AUTOSAR R4.x compliant data type support

AUTOSAR data types workflow improvements

R2014b provides enhanced AUTOSAR Release 4.x compliant data type support.

7-17

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-initialization-runnable.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-provide-require-port.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar-software-components.html#bukv7c6-1

R2014b

• For round-trip workflows involving AUTOSAR components originated outside
MATLAB, the arxml importer and exporter preserve data type information and
mapping for each imported AUTOSAR data type.

• For AUTOSAR components originated in Simulink, the software generates AUTOSAR
application, implementation, and base types to preserve the information contained
within Simulink data types.

For more information, see Release 4.x Data Types.

Application data type export control

For AUTOSAR data types created in Simulink, by default, the software generates
application base types only for fixed-point data types and enumerated date types with
storage types.

Beginning in R2014b, if you want to override the default behavior for generating
application types, you can configure the arxml exporter to generate an application type,
along with the implementation type and base type, for each exported AUTOSAR data
type. For more information, see Control Application Data Type Generation.

DataTypeMappingSet package and name control

In previous releases, for AUTOSAR software components created in Simulink,
users did not have control over the AUTOSAR package and short name exported for
AUTOSAR data type mapping sets. The arxml exporter generated the short name
DataTypeMappingSet for every data type mapping set. The exporter used a rule-based
package path that was not configurable in Simulink.

Beginning in R2014b, you can control the package and short-name for data type mapping
sets. To configure the data type mapping set package for export, set the XMLOptions
property DataTypeMappingPackage using the Configure AUTOSAR Interface dialog
box or the AUTOSAR property set function. For example:

7-18

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/data-types.html#btc1dbl
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-release-4-x-data-types.html#buduq1n

 Code Generation

The exported arxml uses the specified package. The default mapping set short-name
is the component name ASWC prefixed to DataTypeMappingsSet. You can specify
a short name for a data type mapping set using the AUTOSAR property function
addPackageableElement.

For more information, see Configure DataTypeMappingSet Package and Name.

Data initialization with ApplicationValueSpecification

AUTOSAR Release 4.0 introduced application data types and implementation data
types, which represent the application-level physical attributes and implementation-
level attributes of AUTOSAR data types. To initialize AUTOSAR data objects typed
by application data type, R4.1 requires AUTOSAR application value specifications
(ApplicationValueSpecifications).

Beginning in R2014b, for AUTOSAR data initialization with
ApplicationValueSpecification, Embedded Coder provides the following support:

• The arxml importer uses ApplicationValueSpecifications found in imported
arxml files to initialize the corresponding data objects in the Simulink model.

• If you select AUTOSAR schema 4.0 or later for a model that contains AUTOSAR
data typed by application data type, code generation exports arxml code that uses
ApplicationValueSpecifications to specify initial values for AUTOSAR data.

AUTOSAR CompuMethod control

CompuMethod direction for linear functions

In previous releases, Embedded Coder software imported AUTOSAR computational
methods (CompuMethods) described in arxml code and preserved them across round-
trips between an AUTOSAR authoring tool (AAT) and Simulink. For designs originated
in Simulink, the arxml exporter created schema-compliant CompuMethods, but
did not allow users control over CompuMethod attributes, including the direction of
CompuMethod conversion between internal and physical representations of a value.
For CompuMethods originated in Simulink, the exporter generated only the forward,
internal-to-physical direction.

Beginning in R2014b, you can control how conversion direction is described in exported
CompuMethods. Using either the Configure AUTOSAR Interface dialog box or the
AUTOSAR property set function, you can specify one of the following CompuMethod
direction values:

7-19

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-release-4-x-data-types.html#buduri5-1

R2014b

• InternalToPhys (default) — Generate CompuMethod sections for conversion of
internal values into their physical representations.

• PhysToInternal — Generate CompuMethod sections for conversion of physical
values into their internal representations.

• Bidirectional — Generate CompuMethod sections for both internal-to-physical and
physical-to-internal conversion directions.

For more information, see CompuMethod Direction for Linear Functions.

CompuMethod generated for each ApplicationDataType

In previous releases, the arxml exporter preserved AUTOSAR computational methods
(CompuMethods) that you imported into Simulink, but for designs originated in
Simulink, generated CompuMethods only for fixed point application types.

Beginning in R2014b, the exporter generates CompuMethods for every primitive
application type. Measurement and calibration tools can monitor and interact with more
application data. For more information, see CompuMethod Categories for Data Types.

Unit reference generated for each CompuMethod

In previous releases, exported CompuMethods did not contain unit references. Beginning
in R2014b:

• The arxml importer preserves unit and physical dimension information found in
imported CompuMethods. The software preserves CompuMethod unit and physical
dimension information across round-trips between an AUTOSAR authoring tool
(AAT) and Simulink.

• For designs originated in Simulink, the exporter generates a unit reference for each
CompuMethod.

Providing a unit for each exported CompuMethod helps support measurement
and calibration tool use of exported AUTOSAR data. For more information, see
CompuMethod Unit References.

Rational function CompuMethod for dual-scaled parameter

R2014b provides greater control over the AUTOSAR CompuMethods generated
for AUTOSAR dual-scaled parameters. For an AUTOSAR dual-scaled parameter,
which stores two scaled values of the same physical value, the software generates the
CompuMethod category RAT_FUNC. The computation method can be a first-order rational

7-20

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurr8
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/data-types.html#bua1enf-1
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#bueb74p-1

 Code Generation

function. For more information, see Rational Function CompuMethod for Dual-Scaled
Parameter.

Improved AUTOSAR package configuration

In previous releases, the arxml exporter generated a fixed file and package structure
for packaging AUTOSAR elements. Beginning in R2014b, Embedded Coder software
provides more flexible configuration and management of AUTOSAR packages. For
example:

• AUTOSAR packages and their elements now are fully preserved across round-trips
between an AUTOSAR authoring tool (AAT) and Simulink.

• AUTOSAR XML options in Simulink include ten new packaging parameters
(XmlOptions properties). You can now easily group AUTOSAR elements of the
following categories into packages:

• Application data types (schema 4.x)
• Software base types (schema 4.x)
• Data type mapping sets (schema 4.x)
• Constants and values
• Physical data constraints (referenced by application data types or data prototypes)
• System constants (schema 4.x)
• Software address methods
• Mode declaration groups
• Computational methods
• Units and unit groups (schema 4.x)

For more information, see Configure AUTOSAR Package Structure.

AUTOSAR calibration component export

In previous releases, the software exported an AUTOSAR calibration component
(ParameterSwComponent) only if it had been created in an AUTOSAR authoring tool
(AAT) and imported into Simulink from an arxml file.

Beginning in R2014b, the software can export an AUTOSAR calibration component
originated in Simulink. To configure AUTOSAR parameters for export in a calibration
component, use the custom storage class (CSC) CalPrm with AUTOSAR.Parameter

7-21

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurwb-1
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurwb-1
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-packages.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.parameter.html

R2014b

data objects. For more information, see Model AUTOSAR Calibration Parameters and
Configure AUTOSAR Calibration Component.

Simulink Min and Max mapping to AUTOSAR physical data constraints

Beginning in R2014b, in models configured for AUTOSAR, the software maps minimum
and maximum values for Simulink data to the corresponding physical constraint values
for AUTOSAR application data types. Specifically:

• If you import ARXML files, PhysConstr values on ApplicationDataTypes in the
ARXML files are imported to Min and Max values on the corresponding Simulink data
objects and root-level I/O signals.

• When you export ARXML from a model, the Min and Max values specified on
Simulink data objects and root-level I/O signals are exported to the corresponding
ApplicationDataType PhysConstrs in the ARXML files.

AUTOSAR addPackageableElement replaces add*Interface functions

R2014b introduces a new AUTOSAR property function, addPackageableElement, for
adding packaged elements to the AUTOSAR configuration of a model. The function
syntax is:

addPackageableElement(arProps,category,package,name)

addPackageableElement(arProps,category,package,name,property,value)

See the addPackageableElement reference page. For an example of using
addPackageableElement as part of configuring a DataTypeMappingSet element for
an AUTOSAR model, see “DataTypeMappingSet package and name control” on page
7-18.

Compatibility Considerations

Using the function addPackageableElement with element categories
ModeSwitchInterface or SenderReceiverInterface replaces the following
equivalent AUTOSAR property functions:

• addMSInterface(arProps,qName,property,value)

• addSRInterface(arProps,qName,property,value)

If an existing script calls addMSInterface or addSRInterface, replace the call
with an equivalent call to addPackageableElement. For example, consider the
addSRInterface call in the following code:

7-22

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/calibration-parameters.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-parameter-software-component.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html
http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html

 Code Generation

open_system('rtwdemo_autosar_multirunnables');

arProps=autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

addSRInterface(arProps,'/pkg/if/Interface3','IsService',true);

ifPaths=find(arProps,[],'SenderReceiverInterface',...

 'IsService',true,'PathType','FullyQualified')

Replace the addSRInterface call with an equivalent addPackageableElement call.
For example:
open_system('rtwdemo_autosar_multirunnables');

arProps=autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

addPackageableElement(arProps,'SenderReceiverInterface','/pkg/if','Interface3',...

 'IsService',true);

ifPaths=find(arProps,[],'SenderReceiverInterface',...

 'IsService',true,'PathType','FullyQualified')

Code generation report with enhanced navigation and integrated access
to code metrics data

In R2014b, the following enhancements improve navigation and access to code metrics in
the code generation report:

• Model-to-code navigation toolbar at the top of the code window with buttons to
navigate forward and backward through the highlighted code for a model block.

• Lines in a navigation sidebar show the locations of the highlighted code in the current
file. Hovering your cursor over a line shows you the code line number. Clicking the
line takes you directly to the code.

• Code inspect window provides code metrics and links to definitions when you click
linked variables or functions in the code.

• Hovering your cursor over global variables and functions in the code window opens a
window with code metrics data.

For more information, see Trace Model Objects to Generated Code and View Code
Metrics and Definitions in the Generated Code.

Updated license requirements for viewing code generation report

In 2014b, if you open a code generation report from a MATLAB menu, the software
checks out the same licenses that were required when you created the report at the time
of code generation. You can view the HTML report in a Web browser, but the following
code generation report features are not available:

• Traceability between the code and the model.

7-23

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/tracing-model-objects-to-generated-code.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/view-code-metrics-and-definitions-in-the-generated-code.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/view-code-metrics-and-definitions-in-the-generated-code.html

R2014b

• Code metrics data when you hover over global variables and functions in the code
window.

Compatibility Considerations

Previously, you did not need a license to view the code generation report from a MATLAB
menu.

Option for doxygen style comments in generated code

You can now specify doxygen style comments in a code generation template (CGT)
file. The style attribute options for these comments are doxygen, doxygen_cpp,
doxygen_qt, and doxygen_qt_cpp.

doxygen with C style comments

/**

 * multiple line comments

 * second line

 */

doxygen_cpp with C++ style comments

///

/// multiple line comments

/// second line

///

doxygen_qt with C style comments

/*!

 * multiple line comments

 * second line

 */

doxygen_qt_cpp with C++ style comments

//!

//! multiple line comments

//! second line

//!

For more information on using code generation template files to customize file and
function banners, see Generate Custom File and Function Banners.

7-24

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/generate-custom-file-and-function-banners.html

 Code Generation

Dynamic memory allocation parameters renamed

On the Code Generation > Interface pane, two dynamic memory allocation
parameters are renamed.

Code Generation > Interface pane

R2014b R2014a

Command line (unchanged)

Use dynamic memory
allocation for model
initialization

Generate function to
allocate model data

GenerateAllocFcn

Use dynamic memory
allocation for model block
instantiation

Use operator new for
referenced model object
registration

UseOperatorNewForModelRefRegistration

The command line names are unchanged.

Template makefile compatibility with execution time profiling

Consider a custom target that requires a template makefile (TMF) where the
SHARED_OBJS definition is based on SHARED_SRC. If you specify code execution profiling
for your model, you might observe a failure when you try to build the model. The failure
occurs because the folder that contains the shared utility object files is different from the
folder that contains the corresponding source code. How you fix this issue depends on
how SHARED_OBJS is defined in your TMF. For example, you must replace:

SHARED_OBJS = $(SHARED_SRC:.c=.obj)

with:

SHARED_OBJS = $(SHARED_BIN_DIR)*.obj

For more information, see Customize Build to Use Shared Utility Code.

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation

In R2014b, you can select an Intel® Performance Primitive (IPP) code replacement
library for a specific platform. You can generate code for a platform that is different from
the host platform that you use for code generation. The new code replacement libraries
are:

7-25

http://www.mathworks.com/help/releases/R2014b/rtw/ug/shared-utility-code.html

R2014b

• Intel IPP for x86-64 (Windows)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)
• Intel IPP for x86/Pentium (Windows)
• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)
• Intel IPP for x86-64 (Linux)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

For a model that you create in R2014b, you cannot select these libraries:

• Intel IPP
• Intel IPP/SSE with GNU99 extensions

If, however, you open a model from a previous release that specifies Intel IPP or Intel
IPP/SSE with GNU99 extensions, the library selection is preserved and that library
appears in the selection list.

See Choose a Code Replacement Library.

7-26

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/choose-a-code-replacement-library-sc.html

 Deployment

Deployment

Embedded Coder support packages for AUTOSAR, TI Concerto, and
Freescale FRDM-KL25Z

R2014b adds the following Embedded Coder support packages:

• Embedded Coder Support Package for AUTOSAR Standard — You can create
and modify an AUTOSAR configuration for a model, model AUTOSAR elements,
and generate ARXML and AUTOSAR-compatible C code from a model. For more
information, see Support Package for AUTOSAR Standard.

• Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors — You can generate, build, and deploy code on Texas Instruments C2000
F28M35x/ F28M36x Concerto processors. For more information, see Support for Texas
Instruments C2000 F28M3x Concerto Processors.

• Embedded Coder Support Package for Freescale FRDM-KL25Z Board — You can
generate, build, and deploy a control algorithm on Freescale FRDM-KL25Z boards.
For more information, see Support package for Freescale FRDM-KL25Z Board.

Relational operator replacement

You can now include code replacement mappings for basic relational operators (<, <=, >,
>=, ==, and !=) in custom code replacement libraries. You can apply relational operator
mappings to scalar, vector, or matrix data.

For more information, see Scalar Operator Code Replacement and Small Matrix
Operation to Processor Code Replacement.

Code replacement involving vector and matrix data

• “Trigonometry function replacement” on page 7-27
• “Replacement of shift and cast operations involving vector and matrix operands” on

page 7-28

Trigonometry function replacement

In R2014b, the C/C++ code generator supports code replacement of the following
trigonometry functions for scalar, vector, and matrix input and for output arguments in
code generated from:

7-27

http://www.mathworks.com/help/releases/R2014b/ecoder/autosar/support-package-for-autosar-standard.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/texasinstrumentsc2000concerto/release-notes.html#buc55o3-2
http://www.mathworks.com/help/releases/R2014b/supportpkg/texasinstrumentsc2000concerto/release-notes.html#buc55o3-2
http://www.mathworks.com/help/releases/R2014b/supportpkg/freedomboard/release-notes.html#buc55o3-2
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/scalar-operator-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html

R2014b

• MATLAB functions
• MATLAB Function block
• MATLAB action language in Stateflow charts

Supported base types include floating point, complex, and noncomplex.

acos asec atand cscd sech

acosd asecd cos csch sin

acot asech cosd hypot sind

acotd asin cosh log sinh

acoth asind cot log10 tan

acsc atan cotd log2 tand

acscd atan2 coth sec tanh

acsch atan2d csc secd

For more information, see Map Math Functions to Application-Specific Implementations.

Replacement of shift and cast operations involving vector and matrix operands

In R2014b, you can specify code replacements for these vector and matrix operations:

• Cast (data type conversion), RTW_OP_CAST
• Shift Left, RTW_OP_SL
• Shift Right Arithmetic, RTW_OP_SRA
• Shift Right Logical, RTW_OP_SRL

For more information, see Small Matrix Operation to Processor Code Replacement.

Algorithm specification for addition and subtraction operator replacement

Starting with R2014b, you can specify the algorithm—cast-before-operation (default) or
cast-after-operation—for addition and subtraction operations that must be matched for
operator replacement to occur.

For more information, see Addition and Subtraction Operator Code Replacement.

7-28

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#brc_paf-1
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/addition-and-subtraction-operator-code-replacement-sc.html

 Deployment

Compatibility Considerations

By default, the code generator attempts to replace addition and subtraction operations
as cast-before-operation algorithms. This replacement matches the behavior in R2013a
through R2014a. If the code generator cannot classify an operation strictly as a cast-
before-operation, some replacements for non-binary-point operations do not occur. For
more information, see Addition and Subtraction Operator Code Replacement.

If you are using a code replacement library developed with an earlier release, verify code
replacements for addition and subtraction operators. For information, see Review and
Test Code Replacements.

Improved code replacement with output type cast absorption

Starting in R2014b, the code generator includes downcasts on the output of addition,
subtraction, multiplication, and division operations involving real, scalar, and fixed-point
data for code replacements.

For example, consider a case where u1 and u2 are of type integer. y1 is of type short
and the operation being replaced is y = (short) (u1*u2). In previous releases, the
multiplication operation was replaced without including the output cast.

y = (short) (my_mul_output_integer(u1, u2));

In R2014b, you can register an additional table replacement entry to get the following
replacement:

y = my_mul_output_short(u1, u2);

The code generator does not handle intermediate casts for code replacement.

Lookup table function code replacement extended to 30 dimensions

R2014b introduces functions interpND and lookupND. You can specify these functions
to increase the dimension support of code replaced for the Interpolation Using Prelookup
and n-D Lookup Table blocks to 30. The conceptual signature that you specify for the
code replacement table entry depends on the number of dimensions that you want the
function to support.

For more information, see Lookup Table Function Code Replacement

7-29

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/addition-and-subtraction-operator-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/review-and-test-code-replacements-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/review-and-test-code-replacements-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html

R2014b

Rounding mode support for lookup table function replacement

As of R2014b, the code generator supports use of algorithm parameters
Integer rounding mode (RndMeth) and Saturate on integer overflow
(SaturateOnIntegerOverflow) in code replacement specifications for lookup table
functions.

For more information, see Lookup Table Function Code Replacement.

Algorithm parameter value sets in code replacement table entries

Prior to R2014b, code replacement table entries could specify multiple values for an
algorithm parameter. However, you had to specify them in separate code replacement
table entries. For example, to specify that a lookup table function with a linear or binary
index search trigger a match for code replacement, you specified the following calls to
addAlgorithmProperty in two separate table entries:

Entry 1:

addAlgorithmProperty('IndexSearchMethod','Linear search');

Entry 2:

addAlgorithmProperty('IndexSearchMethod','Binary search');

As of this release, you can specify multiple values in a single call to
addAlgorithmProperty in one entry. Specify the value part of the parameter name-
value pair as a set of string values. This specification reduces the lines of code required
for more complex, conceptual specifications. For example:

addAlgorithmProperty('IndexSearchMethod', {'Linear search', ...

 'Binary search'});

For more information, see addAlgorithmProperty and Lookup Table Function Code
Replacement.

coder.replace support for functions specified with varargin input variable

As of R2014b, the coder.replace function supports MATLAB functions that specify a
variable-length input argument list by using a varargin input variable.

For more information, see coder.replace.

7-30

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ref/addalgorithmproperty.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ref/coder.replace.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/varargin.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ref/coder.replace.html

 Deployment

Documentation installation with hardware support package

Starting in R2014b, each hardware support package has its own documentation. For a
list of Embedded Coder support packages, see Embedded Coder Supported Hardware.

Support package for Altera SoC platform

You can use the Embedded Coder Support Package for Altera® SoC Platform to generate,
build, and deploy code to the Altera Cyclone V SoC development kit or to the Arrow
SoCKit development board. The executable runs in the Linux environment on the ARM
Cortex-A9 processor on the Altera SoC platform.

See Install Support for Altera SoC Platform.

For more information, see Embedded Coder Support Package for Altera SoC Platform.

Support package for BeagleBone Black hardware

You can use the Embedded Coder Support Package for BeagleBone Black Hardware to
generate, build, and deploy code to the BeagleBone Black board.

See Install Support for BeagleBone Black Hardware.

For more information, see Embedded Coder Support Package for BeagleBone Black
Hardware.

Support for Eclipse IDE has been removed

Embedded Coder support for Eclipse™ IDE has been removed.

You can no longer use Embedded Coder with Eclipse IDE to build and run an executable
on BeagleBoard hardware or ARM processors.

Compatibility Considerations

To replace some of the capabilities provided by Eclipse IDE, consider using:

• Embedded Coder Support Package for ARM Cortex-A Processors
• Simulink Support Package for BeagleBoard Hardware

7-31

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/embedded-coder-supported-hardware.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/alterasoc/ug/installation-and-setup.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/alterasoc/index.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/beaglebone/ug/install-target-for-beaglebone-black-hardware.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/beaglebone/index.html
http://www.mathworks.com/help/releases/R2014b/supportpkg/beaglebone/index.html

R2014b

To install support packages, see supportPackageInstaller.

Support for Green Hills MULTI IDE has been removed

Embedded Coder support for Green Hills® MULTI® IDE has been discontinued for
R2014b.

Compatibility Considerations

If you are using the Embedded Coder Support Package for Green Hills MULTI IDE, the
support package is available for use with previous releases for an unspecified length of
time.

Support for Texas Instruments C5000 DSPs will be removed

Support for Texas Instruments C5000™ DSPs will be removed in a future release.

7-32

http://www.mathworks.com/help/releases/R2014b/matlab/ref/supportpackageinstaller.html

 Performance

Performance

Reduced RAM and faster execution for modeling patterns including select-
assign-iterate blocks, subsystem interfaces, and model references

• “Example Model” on page 7-33
• “In-place assignments for select-assign-iterate pattern” on page 7-35
• “Subsystem signal information” on page 7-36
• “Variable reuse around call site” on page 7-37

Code generation produces code with more optimizations, reducing RAM/ROM
consumption and improving execution speed. The ability of the code generator to perform
more optimizations is due to the following efficiency enhancements.

Example Model

Consider the model example_subsys1, that contains the subsystem and models used for
the examples for each optimization:

7-33

R2014b

7-34

 Performance

In-place assignments for select-assign-iterate pattern

The code generator generates in-place assignments for the select-assign-iterate modeling
pattern for the three subsystem function packaging options.

Example subsystem SS_InPlaceSCAssign:

The code generator produces this code for version R2014a:

/* Output and update for atomic system '<S4>/Subsystem1'*/

void example_subsys1_Subsystem(int32_T rtu_In1)

{

 int32_T i;

 /* Assignment: '<S6>/Assignment'incorporates:

 * DataStoreRead:'<S6>/Data Store Read'

 */

 if (example_subsys1_Dwork.ForIterator_IterationMarker<2){

 example_subsys1_Dwork.ForIterator_IterationMarker=2U;

 for(i=0;i<30;i++){

 example_subsys1_B.Assignment[i]=example_subsys1_DWork.B[i];

 }

 }

 example_subsys1_B.Assignment[rtu_In1]=rtu_In1;

 /* End of Assignment:'<S6>/Assignment'*/

 /* DataStoreWrite:'<S6>/DataStoreWrite'*/

 for(i=0;i<30;i++){

 example_subsys1_DWork.B[i]=example_subsys1_B.Assignment[i];

7-35

R2014b

 }

 /* End of DataStoreWrite:'<S6>/DataStoreWrite'*/

}

The code generator produces this code for version R2014b:

/* Output and update for atomic system: '<S3>/Subsystem1' */

void example_subsys1_Subsystem1(int32_T rtu_In1)

{

 /* Assignment: '<S5>/Assignment' */

 if (example_subsys1_DWork.ForIterator_IterationMarker < 2) {

 example_subsys1_DWork.ForIterator_IterationMarker = 2U;

 }

 example_subsys1_DWork.B[rtu_In1] = rtu_In1;

 /* End of Assignment: '<S5>/Assignment' */

}

The code generator produces less code, does not use iteration loops, and uses fewer
variable references.

Subsystem signal information

The code generator has more information about signals passing through the subsystem
boundary. It uses that information to generate more fully optimized code.

The code generator generates less code for this model:

The code generator produces this code for version R2014a:

BigBus rtb_Delay1;

/* Delay: '<Root>/Delay1' */

7-36

 Performance

rtb_Delay1 = example_subsys1_DWork.Delay1_DSTATE;

/* Outputs for Atomic SubSystem: '<Root>/SS_BusExplosion' */

example_subsys1_SS_BusExplosion(rtb_Delay1.extra);

/* End of Outputs for SubSystem: '<Root>/SS_BusExplosion'*/

The code generator produces this code for version R2014b:

/* Delay: '<Root>/Delay1' */

 example_subsys1_SS_BusExplosion(example_subsys1_DWork.Delay1_DSTATE.extra);

 /* End of Outputs for SubSystem: '<Root>/SS_BusExplosion' */

The generated code requires fewer variables and fewer statements.

Variable reuse around call site

The code generator reuses variables around subsystem function call sites.

Example model:

The code generator produces this code for version R2014a:

 /* Delay: '<Root>/Delay2'*/

 for (i=0;i<12;i++){

 rtb_Delay2[i] = example_subsys1_DWork.Delay2_DSTATE[i];

 }

7-37

R2014b

 /* End of Delay: '<Root>/Delay2'*/

 for (i=0;i<12;i++){

 /*Product '<Root>/Product' incorporates:

 *Inport:'<Root>/In1'

 */

 rtb_Delay2_i=example_subsys1_U.In1[i]*rtb_Delay2[i];

 /*Outport:'<Root>/Out2'*/

 example_subsys1_Y.Out2[i]=rtb_Delay2_i;

 /* Product '<Root>/Product'*/

 rtb_Delay2[i]=rtb_Delay2_i;

 }

 /*Update for Delay:'<Root>/Delay2'*/

 for (i=0;i<12;i++){

 example_subsys1_DWork.Delay2_DSTATE[i] = rtb_Delay2[i];

 }

 /*End of Update for Delay:'<Root>/Delay2'*/

The code generator produces this code for version R2014b:

 /* Product: '<Root>/Product' incorporates:

 * Delay: '<Root>/Delay2'

 * Inport: '<Root>/In1'

 */

 for (rtb_DataTypeConversion = 0; rtb_DataTypeConversion < 12;

 rtb_DataTypeConversion++) {

 example_subsys1_Y.Out2[rtb_DataTypeConversion] *=

 example_subsys1_U.In1[rtb_DataTypeConversion];

 }

 /* End of Product: '<Root>/Product' */

The code generator produces much less code, including one iteration loop instead of three
iteration loops. It produces fewer variable references with the same functionality.

Global variable localization optimizations

When you generate code for a model, the code generator optimizes variable references
by replacing global variables with local variables. This replacement improves execution
speed and reduces RAM/ROM.

7-38

 Performance

Consider this model, named exlocal:

Observe the following lines of code generated for R2014a in the exlocal_ert_rtw
folder, in the exlocal.c file, in the Model step function.

 exlocal_B.Gain[0] = 2.0 * exlocal_U.In1[0];

 exlocal_B.Gain[1] = 2.0 * exlocal_U.In1[1];

 exlocal_B.Gain[2] = 2.0 * exlocal_U.In1[2];

 exlocal_B.Gain[3] = 2.0 * exlocal_U.In1[3];

and

 exlocal_Subsystem_03(exlocal_U.In3, exlocal_B.Gain, &exlocal_Y.Out1);

Compare the same lines of code generated for R2014b.

 Gain[0] = 2.0 * exlocal_U.In1[0];

 Gain[1] = 2.0 * exlocal_U.In1[1];

 Gain[2] = 2.0 * exlocal_U.In1[2];

 Gain[3] = 2.0 * exlocal_U.In1[3];

 exlocal_Subsystem_03(Gain, exlocal_U.In3, &exlocal_Y.Out1);

For more information, see Specify Global Variable Localization.

7-39

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/specify-global-variable-localization.html

R2014b

Verification

Top-model code testing with Model block SIL and PIL

You can run Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulations to test code that is generated from a top model. This feature enables you to
use a model-based test harness to verify code for a deployable top-level component. You
can create test cases, switch easily between simulation modes, and analyze numerical
results.

If you set the Model block parameter, Simulation mode (SimulationMode), to
Software-in-the-loop (SIL) or Processor-in-the-loop (PIL), the software
provides a new parameter Code under test (CodeUnderTest) with the following
options:

• Top model — Code generated from top model, with the standalone code interface.
Previously, this code was tested by running a top-model SIL or PIL simulation or by
creating a SIL or PIL block.

• Model reference (default) — Code generated from referenced model as part of
a model reference hierarchy, which was previously the only behavior available for
Model block SIL and PIL.

For more information, see Referenced Model Simulation Using SIL or PIL.

SIL/PIL support for Simulink Function and Function Caller blocks

Use top-model and Model block SIL or PIL simulations to verify code generated from
models that have Simulink Function and Function Caller blocks.

7-40

http://www.mathworks.com/help/releases/R2014b/ecoder/ug/referenced-model-simulation-using-sil-or-pil.html

 Verification

The software does not support SIL or PIL block verification for these blocks. Use the
Model block SIL/PIL approach, with the Code under test block parameter set to Top
model.

For more information, see:

• Simulink Functions: Create and call functions across Simulink and Stateflow
• Choose a SIL or PIL Approach

SIL debugging support for Linux

On a Linux system, you can use the GNU Data Display Debugger (DDD) to observe code
behavior during a SIL simulation.

Previously, SIL debugging was available only for a Windows system.

For more information, see Debug Code During SIL Simulations.

PIL support for test hardware approach

You can run processor-in-the-loop (PIL) simulations when the Configuration
Parameters > Hardware Implementation > Test hardware is the same as
production hardware check box is not selected.

SIL/PIL support for model initialization dynamic memory allocation

You can run SIL/PIL simulations with models that dynamically allocate memory for
model data structures.

7-41

http://www.mathworks.com/help/releases/R2014b/simulink/release-notes.html#buf3l_k-3
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/choosing-a-sil-or-pil-approach.html
http://www.mathworks.com/help/releases/R2014b/ecoder/ug/debug-code-during-sil-simulations.html

R2014b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

7-42

http://www.mathworks.com/support/bugreports/

R2014a
Version: 6.6

New Features

Bug Fixes

Compatibility Considerations

R2014a

Code Generation from MATLAB Code

Template to customize code generation output for MATLAB Coder

You can use the coder.MATLABCodeTemplate class to customize code generation output
for MATLAB Coder. Using a default or custom template, you can set token values to
customize file banners, function banners, and file trailers.

For more information, see Generate Custom File and Function Banners for C and C++
Code.

Compatibility Considerations

Beginning in R2014a, the code generator adds file and function banners to
generated code by default. If you do not specify a code generation template (CGT)
file to customize the banners, the code generator uses the default template
file, matlabcoder_default_template.cgt, in the matlabroot/toolbox/coder/
matlabcoder/templates/ folder.

In-place function replacement with coder.replace in MATLAB

In R2014a, you can create code replacement table entries that specify in-place function
replacement if you are generating C or C++ code from MATLAB code directly or from a
MATLAB Function block. In-place code replacement is an optimization technique that
uses a single buffer, that is, the same memory, to store function input and output data,
as in x=foo(x).

For more information, see Specify In-Place Code Replacement and coder.replace.

Single-line (//) comment style available for generated code

In earlier releases, C and C++ code generation always used a multi-line (/*...*/)
comment style. Beginning in R2014a, you can select a single-line (//...) comment style
for generated code.

Set the comment style in one of the following ways:

• In a project, in the Project Settings dialog box Code Appearance tab, set Comment
Style to one of the following values.

8-2

http://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.matlabcodetemplate-class.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/generate-custom-file-and-function-banners-for-matlab-code-generation.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/generate-custom-file-and-function-banners-for-matlab-code-generation.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/replace-matlab-function-with-custom-code.html#bt8zvwk
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.replace.html

 Code Generation from MATLAB Code

Value Description

Auto(Use standard comment style

of the target language)

For C, generate multi-line comments.
For C++, generate single-line comments.
(default)

Single-line (Use C++-style

comments)

Generate single-line comments preceded
by //.

Multi-line (Use C-style

comments)

Generate single or multi-line comments
delimited by /* and */.

• At the command prompt, create a code generation configuration object. Set the
CommentStyle parameter to one of the following values.

Value Description

'Auto' For C, generate multi-line comments. For C++, generate single-
line comments. (default)

'Single-line' Generate single-line comments preceded by //.
'Multi-line' Generate single or multi-line comments delimited by /* and */.

For example, the following code sets the comment style to single-line comments:

cfg = coder.config('lib');

cfg.CommentStyle='Single-line';

Here is an example of generated code that uses single-line comments:
//

// mcadd.c

//

// Code generation for function 'mcadd'

//

Software-in-the-loop verification for MATLAB Coder

The following table summarizes software-in-the-loop (SIL) execution improvements.

Feature R2014a support Previous support

Output type Dynamic
library

Yes No

8-3

R2014a

Feature R2014a support Previous support

Constant
inputs

Yes Yes. If values passed
through the SIL interface
differ from the values used
by the build process, the
SIL execution uses the build
values. The execution does
not generate an error or
warning.

Interface types
Constant
global data

Yes. If values passed
through the SIL interface
differ from the values used
by the build process, the
SIL execution uses the
build values. The execution
does not generate an error
or warning.

Not applicable.

Fixed-point
data

Yes Yes, with limitations.

Multiword
fixed-point
data

Yes No
Data types

Empty
values

Yes No

Size

Static
variable-size
arrays

Variable-size function
arguments are not
supported. For function
arguments that are fixed-
size structures, variable-
size fields are supported.

No

For more information, see SIL Execution Support and Limitations.

Change of default value for MATLABFcnDesc

Previously, the MATLABFcnDesc parameter of a coder.EmbeddedCodeConfig code
generation configuration object had a default value of false. In R2014a, the default

8-4

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/sil-execution-support-and-limitations.html
http://www.mathworks.com/help/releases/R2014a/coder/ref/coder.embeddedcodeconfig-class.html

 Code Generation from MATLAB Code

value of the MATLABFcnDesc parameter is true. When the value of the MATLABFcnDesc
parameter is true, the MATLAB function help text is included in a function banner in
generated code.

8-5

R2014a

Model Architecture and Design

Capability to merge AUTOSAR authoring tool changes into Simulink
models as part of round-trip iterations

To help support the round trip of AUTOSAR components between an AUTOSAR
authoring tool (AAT) and the Simulink design environment, R2014a adds update and
merge capabilities to the arxml importer.

Given a Simulink model into which you have imported arxml code or from which
you have exported arxml code, suppose that changes have been made to the arxml
information in an AAT. Using the arxml.importer method updateModel, you can
import the changed arxml information and request that the changes be merged into
the model. The update/merge generates a report that details the updates applied to the
model, and required changes that were not made automatically.

Here is an example of a generated AUTOSAR update report. For more information, see
Merge AUTOSAR Authoring Tool Changes Into a Model.

8-6

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/importing-an-autosar-software-component.html#buax917-1

 Model Architecture and Design

8-7

R2014a

AUTOSAR 4.0 static and constant memory, AUTOSAR-typed per-instance
memory, and VariationPointProxy

Static and constant memory

Beginning in R2014a, from a Simulink model, you can import and export AUTOSAR
Static Memory and Constant Memory data, as defined by AUTOSAR schema version
4.0. Static Memory corresponds to Simulink internal global signals. Constant Memory
corresponds to Simulink internal global parameters. When exported in arxml, Static
Memory and Constant Memory allow the use of measurement and calibration tools to
monitor the internal memory data.

For more information, see Model AUTOSAR Static and Constant Memory and Configure
AUTOSAR Static or Constant Memory

AUTOSAR-typed per-instance memory

Beginning in R2014a, you can model AUTOSAR-typed per-instance memory
(arTypedPerInstanceMemory) in Simulink models. This class of per-instance
memory was introduced in AUTOSAR schema version 4.0. You describe
arTypedPerInstanceMemory using standard AUTOSAR data types (rather than
C types). When exported in arxml, arTypedPerInstanceMemory allows the use of
measurement and calibration tools to monitor the global variable corresponding to per-
instance memory.

For more information, see Model AUTOSAR Per-Instance Memory, Configure AUTOSAR
Per-Instance Memory, and the example model rtwdemo_autosar_PIM, which has been
updated to use arTypedPerInstanceMemory.

Variation point proxy

Beginning in R2014a, you can model an AUTOSAR VariationPointProxy, as defined
in AUTOSAR schema 4.0. The Simulink elements include:

• Variant Subsystem or Model Variant block to model a VariationPointProxy inside
an AUTOSAR runnable.

• AUTOSAR.Parameter data objects to model AUTOSAR System Constants,
representing the conditional values associated with the variant condition logic.

• Simulink.Variant data objects in the base workspace to define the variant
condition logic.

For more information, see Configure AUTOSAR Variation Point Proxies.

8-8

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/static-and-constant-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-static-or-constant-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-static-or-constant-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/per-instance-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-variation-point-proxies.html

 Model Architecture and Design

Specify AUTOSAR runnable symbol name distinct from short-name

In previous releases, Embedded Coder derived the symbol name of an AUTOSAR
runnable from the user-specified short-name. Beginning in R2014a, you can specify an
AUTOSAR runnable symbol name that is distinct from the runnable short-name. The
runnable symbol-name can be specified using the Configure AUTOSAR Interface dialog
box or by using the AUTOSAR property functions. The specified AUTOSAR runnable
symbol-name is exported in arxml and C code. Also, you can import a runnable symbol
name using the arxml importer.

For example, suppose that you open the example model
rtwdemo_autosar_multirunnables, open the Configure AUTOSAR Interface dialog
box, and use the Runnables view of the AUTOSAR Properties Explorer to change the
symbol-name of Runnable1 from Runnable1 to test_symbol. When you export code
from the model, the symbol-name test_symbol appears in the exported arxml and C
code as shown below.

rtwdemo_autosar_multirunnables.arxml

<RUNNABLE-ENTITY UUID="65432c3e-34c7-5e82-4229-f6d04927eb78">

 <SHORT-NAME>Runnable1</SHORT-NAME>

...

 <SYMBOL>test_symbol</SYMBOL>

...

</RUNNABLE-ENTITY>

rtwdemo_autosar_multirunnables.c

/* Output function for RootInportFunctionCallGenerator:

 '<Root>/RootFcnCall_InsertedFor_Runnable1_at_outport_1' */

void test_symbol(void)

{

...

}

For more information, see

• Configure AUTOSAR Component Using AUTOSAR Properties Explorer, step 8
• API example Set Runnable Symbol Name

Improved AUTOSAR arxml support for measurement and calibration

Embedded Coder now supports arxml import and export of the following AUTOSAR
software data definition properties (SwDataDefProps):

8-9

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-the-autosar-interface.html#btvq81a
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/autosar.api.getautosarproperties.set.html#bua8erl-1

R2014a

• Software calibration access (SwCalibrationAccess) — Specifies measurement and
calibration tool access to a data object.

• Software address method (swAddrMethod) — Specifies a method to access a data
object (for example, a measurement or calibration parameter) according to a given
address.

• Software alignment (swAlignment) — Specifies the intended alignment of a data
object within a memory section.

• Software implementation policy (swImplPolicy) — Specifies the implementation
policy for a data object, with respect to consistency mechanisms of variables.

In the Simulink environment, you can directly modify the SwCalibrationAccess,
swAddrMethod, and swAlignment properties for some forms of AUTOSAR data. (You
cannot modify the swImplPolicy property.) For more information, see Configure
AUTOSAR Data for Measurement and Calibration.

AUTOSAR data dictionary support

Beginning in R2014a, you can use a Simulink data dictionary in AUTOSAR workflows.
For example, you can:

• Import AUTOSAR data and parameter objects into a data dictionary, instead of into
the MATLAB base workspace.

• Leverage Simulink data dictionary object properties as you edit AUTOSAR data
objects.

• Export arxml and C code reflecting the data dictionary object properties configured
for the model.

For more information about importing data and parameter
objects into a data dictionary, see the DataDictionary property
for methods arxml.importer.createComponentAsModel and
arxml.importer.createCalibrationComponentObjects.

Configure AUTOSAR Interface button removed from AUTOSAR Code
Generation Options

The Configure AUTOSAR Interface button has been removed from the AUTOSAR
Code Generation Options pane of the Simulink Configuration Parameters dialog box.

8-10

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-data-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-data-for-measurement-and-calibration.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer.createcomponentasmodel.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer.createcalibrationcomponentobjects.html

 Model Architecture and Design

The remaining content of the pane pertains directly to configuring AUTOSAR arxml and
C code generation.

To configure an AUTOSAR interface for a model, open the model, check that the
AUTOSAR target (autosar.tlc) is selected for the model, and do either of the
following:

• In the Simulink Editor window, select Code > C/C++ Code > Configure Model as
AUTOSAR Component.

• In the MATLAB command window, enter the command
autosar_ui_launch(model).

If your model is already configured for AUTOSAR, this action opens the Configure
AUTOSAR Interface dialog box. If your model is not configured for AUTOSAR, dialog
boxes first help you create an AUTOSAR interface, then open the Configure AUTOSAR
Interface dialog box with the initial configuration displayed.

Subsystem methods of AUTOSAR arxml.importer class removed

Two subsystem-related methods of the arxml.importer class have been removed from the
software:

• arxml.importer.createComponentAsSubsystem — Create AUTOSAR atomic software
component as Simulink atomic subsystem.

• arxml.importer.createOperationAsConfigurableSubsystems — Create configurable
Simulink subsystem library for client-server operation.

You now can model AUTOSAR multi-runnables as function-call subsystems at the top
level of a model, rather than as function-call subsystems within a wrapper subsystem
that represents the AUTOSAR software component.

Compatibility Considerations

If you are using createComponentAsSubsystem or
createOperationAsConfigurableSubsystems, migrate to using the top-model-
oriented approach described in Configure AUTOSAR Multiple Runnables.

8-11

http://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer-class.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createcomponentassubsystem.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createoperationasconfigurablesubsystems.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-multiple-runnables.html

R2014a

Data, Function, and File Definition

Custom storage class and optimized class declarations for C++ class code
generation

Custom storage class support for C++ class code generation

In previous releases, custom storage classes (CSCs) were not supported for C++ class
code generation. Selecting C++ (Encapsulated) for a model forced on the model option
Ignore custom storage classes.

Beginning in R2014a, you can use CSCs with C++ class code generation. The
configuration requirements for using CSCs with C++ class code generation include the
following Configuration Parameters dialog box settings:

• Code Generation > Interface pane:

• Set Code interface packaging to C++ class.
• Set Multi-instance code error diagnostic to a value other than Error.

• Code Generation pane: Clear the option Ignore custom storage classes.

For more information and limitations, see Specify Custom Storage Class for C++ Class
Code Generation.

Improved code for C++ model class declarations

R2014a enhances generated C++ model class declarations in the following ways:

• Automatically adds a copy constructor and an assignment operator to C++ class
declarations when required to securely handle pointer members.

• Removes an unnecessary rtModel pointer declaration from C++ class declarations.

For more information, see Model Class Copy Constructor and Assignment Operator.

Constant sample time limitations for root-level Outport blocks

In R2014a, the sample time of root-level Outport blocks is checked in the following ways:

• For models using Function Prototype Control or a C++ class interface, the validation
check reports an error if a root-level Outport block has a constant sample time.

8-12

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#buant3e-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#buant3e-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bual7q2-1

 Data, Function, and File Definition

• For models using the AUTOSAR target, the compiler reports a warning if a root-level
Outport block is configured to inherit a constant sample time from its sources. The
compiler then sets the sample time of the root-level Outport block to the fundamental
rate of the model. This warning will become an error in a future release.

• When importing an AUTOSAR model from an XML description of a single runnable,
the import tool sets the sample time of root-level Outport blocks to the fundamental
rate of the model.

• The Upgrade Advisor adds a check identifying root-level Outport blocks with a
constant sample time. If a model uses the AUTOSAR target, Function Prototype
Control, or a C++ class interface, the check lists the Outport blocks with a constant
sample time. The check also includes possible actions to fix the blocks.

Example model rtwdemo_cppencap renamed to rtwdemo_cppclass

As part of the C++ class code interface packaging changes described in Simulink Coder
release note Improved control of C and C++ code interface packaging, C++ class example
model rtwdemo_cppencap has been renamed to rtwdemo_cppclass.

Unit Delay block optimization

In R2014a, when you specify a nonzero initial value or a global storage class, global block
output reuse might eliminate the Unit Delay state in the generated code. Eliminating the
Unit Delay state reduces data copies.

8-13

http://www.mathworks.com/help/releases/R2014a/rtw/release-notes.html#bt7nd3g

R2014a

Code Generation

In-place function replacement with coder.replace in MATLAB and
lookup table code replacement for Simulink

In-place function replacement with coder.replace in MATLAB

In R2014a, you can create code replacement table entries that specify in-place function
replacement if you are generating C or C++ code from MATLAB code directly or from a
MATLAB Function block. In-place code replacement is an optimization technique that
uses a single buffer, that is, the same memory, to store function input and output data,
as in x=foo(x).

For more information, see Specify In-Place Code Replacement and coder.replace.

Lookup table code replacement for Simulink

In R2014a, you can replace these lookup table functions during code generation for
Simulink models.

interp1D interp4D lookup2D lookup5D

interp2D interp5D lookup3D lookupND_Direct

interp3D lookup1D lookup4D prelookup

When you create a replacement table entry for one these functions, you must specify
a set of algorithm properties in addition to the usual code replacement function key,
conceptual arguments, and other applicable math mode information. Specify the
algorithm properties by using new algorithm property fields in the code replacement tool
or the new addAlgorithmProperty function. Conceptual arguments and algorithm
parameters must match for replacement to occur.

For more information, see Map Lookup Table Functions to Application Implementations.

Global variable usage available in the static code metrics report

The static code metrics report displays maximum reads and writes within a function and
total reads and writes for each global variable and each member in a global variable data
structure.

8-14

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/replace-matlab-function-with-custom-code.html#bt8zvwk
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.replace.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bt81ikc

 Code Generation

This information helps you to analyze the benefits of different global variable
optimization choices. You can also compare the generated code across different versions.

For more information, see Generate Static Code Metrics Report for Simulink Model.

Single-line (//) comment style available for generated code

In earlier releases, C and C++ code generation used a multi-line (/*...*/) comment
style. Beginning in R2014a, you can select a single-line (//...) comment style for
generated code using the command-line parameter CommentStyle. For example, the
following command sets the comment style to single-line comments:

>> set_param('rtwdemo_counter','CommentStyle','Single-line')

Here is an example of code generated using the single-line comment style:

// Sum: '<Root>/Sum' incorporates:

// Constant: '<Root>/INC'

// UnitDelay: '<Root>/X'

rtb_sum_out = (uint8_T)(1U + rtwdemo_counter_DW.X);

Note:

• Single-line style comments and the CommentStyle parameter are supported only for
ERT-based targets. Comment style for GRT targets is unchanged in R2014a.

• For C, select single-line comments only if your compiler supports them.

For more information, see Specify Comment Style.

Code indentation support for namespace declarations in generated code

Previously, when specifying a namespace for a model class, the generated namespace
code might be incorrectly indented if you selected K&R for the Indent style on the Code
Generation > Code Style pane. In R2014a, the generated namespace code follows
coding standards when you select the K&R style.

8-15

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/generate-a-static-code-metrics-report.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/specify-comment-style2.html

R2014a

AUTOSAR C code generation enhancements

R2014a provides enhancements to AUTOSAR C code generation for AUTOSAR RTE-
level data access APIs that improve efficiency and traceability of the generated C code.
The changes include:

• Optimized generation of conditionally executed AUTOSAR explicit writes. A runnable
can control whether an explicit RTE API call sends data element values.

• Additional traceability information in comments.
• More efficient expression folding and buffer reuse.

For example, in the following model, a constant value controls whether the software
executes an explicit write.

In the C code generated for the step function, an explicit send (shown in bold) now
appears inside conditional statements.

void Runnable_Step(void)

{

 if (mRelease_Conditional_P.Constant_Value > 0.0)

 {

 mRelease_Conditional_B.In1 =

 *Rte_IRead_Runnable_Step_RPorts_iIn1();

 Rte_Write_PPorts_eOut2(

 Rte_IRead_Runnable_Step_RPorts_iIn1());

 }

 /* Outport: '<Root>/Implicit_Write' */

 Rte_IWrite_Runnable_Step_PPorts_iOut1(

8-16

 Code Generation

 &mRelease_Conditional_B.In1);

}

Static main program module for C++ class code generation

Beginning in R2014a, code generation supports use of a static main program module with
C++ class code generated from a model. Previously, with ERT-based C++ encapsulation,
code generation created an example main program and did not support use of a static
main program.

In most cases, the easiest strategy for deploying generated C++ class code as a
standalone program is to use the Generate an example main program option to generate
the ert_main.cpp module. However, if you turn the Generate an example main
program option off, you can use the module matlabroot/rtw/c/src/common/
rt_cppclass_main.cpp as an example or template for developing your embedded
applications. The module is not part of the generated code; it is provided as a basis for
your custom modifications, and for use in simulation. For more information about using a
static main program, see Static Main Program Module.

Error message for data type replacement and classic call interface conflict

The model configuration options Replace data type names in the generated code
(EnableUserReplacementTypes) and Classic call interface (GRTInterface) are
mutually incompatible. Beginning in R2014a, if both model options are set to on, the
model build generates an error message identifying the conflict. You must turn off one of
the options.

In previous releases, if both options were set in a model reference hierarchy, build
error messages did not precisely identify the conflict. The model build flagged a conflict
between top and referenced models, without identifying the mutually incompatible
options as the cause.

Compatibility Considerations

Beginning in R2014a, a conflict between Replace data type names in the generated
code and Classic call interface is flagged with an error. You must turn off one of the
options. If you have a model reference hierarchy and your intention is to use data type
replacement, turn off Classic call interface. Make sure data type replacement settings
match throughout the hierarchy.

8-17

http://www.mathworks.com/help/releases/R2014a/ecoder/ref/code-generation-pane-templates.html#bq26g63-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/standalone-programs-no-operating-system.html#f13018
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/code-generation-pane-data-type-replacement.html#bq26hbf-1
http://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq9i70c-1

R2014a

Deployment

ARM Cortex-A optimized code generation using Ne10 library

You can replace generic code with Ne10-optimized code based on the ARM Neon general-
purpose SIMD engine.

To use this code replacement library with the QEMU emulator for ARM Cortex-A
processors, or with the Xilinx® Zynq®-7000 platform:

1 Install the Embedded Coder Support Package for ARM Cortex-A Processors, as
described in Install Support for ARM Cortex-A Processors.

2 Enable the code replacement library, as described in Optimize Code for ARM Cortex-
A Processors.

For more information, see:

• Support Package for ARM Cortex-A Processors
• Support Package for Xilinx Zynq-7000 Platform

Lookup table code replacement for Simulink

In R2014a, you can replace these lookup table functions during code generation for
Simulink models.

interp1D interp4D lookup2D lookup5D

interp2D interp5D lookup3D lookupND_Direct

interp3D lookup1D lookup4D prelookup

When you create a replacement table entry for one these functions, you must specify
a set of algorithm properties in addition to the usual code replacement function key,
conceptual arguments, and other applicable math mode information. Specify the
algorithm properties by using new algorithm property fields in the code replacement tool
or the new addAlgorithmProperty function. Conceptual arguments and algorithm
parameters must match for replacement to occur.

For more information, see Map Lookup Table Functions to Application Implementations.

8-18

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-cmsis-code-replacement-libary-for-arm-cortex-m-processors_bt73026-20.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-cmsis-code-replacement-libary-for-arm-cortex-m-processors_bt73026-20.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bt81ikc

 Deployment

Replacement of functions that take vector and matrix arguments

In R2014a, for Simulink Coder, you can specify code replacement conceptual arguments
as vectors or matrices for these functions if the functions are generated from
corresponding Simulink blocks.

abs atanh log rSqrt sincos

acosh cos log10 saturate sinh

asinh cosh mod sign sqrt

atan exp pow signPow tan

atan2 hypot rem sin tanh

When creating table entries for these functions, consider specifying mapping information,
such as algorithm parameters and implementation attributes (for example, saturation
and rounding). The additional detail helps drive expected replacement behavior.
For example, data types that you observe in a model might not match what the code
generator uses as intermediate data types in an operation. To verify expected function
replacement, inspect the generated code.

For more information, see Map Math Functions to Application-Specific Implementations.

Logical data type support for arguments of replaced functions

In R2014a, when creating function arguments for inclusion in code replacement table
entries, you can specify logical for the argument data type, which is equivalent to
specifying boolean.

For more information, see Manage Code Replacement Tables with the Code Replacement
Tool and the getTflArgFromString function.

Code replacement data alignment for complex types

The code generator now supports code replacement data alignment of complex types.

For more information, see Configure Data Alignment for Function Implementations and
addComplexTypeAlignment.

8-19

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#brc_paf-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/manage-crts-with-the-code-replacement-tool.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/manage-crts-with-the-code-replacement-tool.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/gettflargfromstring.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bs6isrc-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/addcomplextypealignment.html

R2014a

Intel IPP (ANSI) and Intel IPP (ISO) code replacement libraries are
combined

Code replacement library selections Intel IPP (ANSI) and Intel IPP (ISO) are
replaced with a single library option, Intel IPP.

For information about setting the code replacement library, see Code replacement
library.

Compatibility Considerations

To specify either ANSI or ISO, use the new Standard math library (TargetLangStandard)
parameter.

See Standard math library.

Support for Eclipse IDE will be removed

Embedded Coder support for Eclipse IDE will be removed in a future release.

Currently, you can use Embedded Coder support for Eclipse IDE to:

• Build an executable from generated code on the host computer, and then run it on
Linux using BeagleBoard hardware or an ARM processor.

• Build an executable from generated code on Linux using the BeagleBoard hardware
(remoteBuild).

• Tune parameters on, and monitor data from, an executable running on the target
hardware (External mode).

• Perform numeric verification using processor-in-the-loop (PIL) simulation.
• Generate IDE projects and use the Automation Interface API.
• Generate makefile projects using the gcc_target configuration in XMakefile.
• Use Linux Task block.

Compatibility Considerations

For BeagleBoard, you can run supportPackageInstaller and install Simulink Support
Package for BeagleBoard Hardware. For more information, see BeagleBoard Hardware.

8-20

http://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq26cja-1
http://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq26cja-1
http://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bt7bn_r-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/remotebuild.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/linuxtask.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ref/supportpackageinstaller.html
http://www.mathworks.com/help/releases/R2014a/simulink/beagleboard.html

 Deployment

Support for Green Hills MULTI IDE will be removed

Embedded Coder Support Package for Green Hills MULTI IDE will be removed in a
future release.

Support package for ARM Cortex-A processors

You can use the Embedded Coder Support Package for ARM Cortex-A Processors to:

• Run executables on Linux using a QEMU emulator for ARM Cortex-A9 processors.
• Generate Ne10-optimized code based on the ARM Neon general-purpose SIMD

engine.
• Tune parameters on, and monitor data from, an executable running on the QEMU

(External mode).
• Verify numeric accuracy and profile execution times using processor-in-the-loop (PIL)

on the QEMU.

To download and install this feature, perform the steps described in Install Support for
ARM Cortex-A Processors.

For more information, see:

• Support Package for ARM Cortex-A Processors
• Support Package for Xilinx Zynq-7000 Platform

Support package for Texas Instruments C6000 processors

You can automatically generate code from Simulink models and execute it on TI’s C6000
processors.

This feature includes the Embedded Coder Support Package for Texas Instruments C6000
Processors block library, which contains the following block libraries:

• Avnet S3ADSP DM6437 (avnet_s3adsp_dm6437)
• C6416 DSK (c6416dsklib)
• C6455 EVM (c6455evmlib)
• C6713 DSK (c6713dsklib)
• C6747 EVM (c6747evmlib)

8-21

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2014a/ecoder/avnet-s3adsp-dm6437-avnet-s3adsp-dm6437.html
http://www.mathworks.com/help/releases/R2014a/ecoder/c6416-dsk-c6416dsklib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/c6455-evm-c6455evmlib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/c6713-dsk-c6713dsklib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/c6747-evm-c6747evmlib.html

R2014a

• DM642 EVM (dm642evmlib)
• DM6437 EVM (dm6437evmlib)
• DM648 EVM (dm648evmlib)
• DSP/BIOS (dspbioslib)
• Optimization — C28x DMC (c28xdmclib)
• Optimization — C64x DSP Library (tic64dsplib)
• Scheduling (c6000dspcorelib)
• Target Communication (targetcommlib)

To install this support package, perform the steps described in Install Support for C6000
DSPs.

For more information, see Support Package for Texas Instruments C6000 DSPs.

Compatibility Considerations

Previous versions of Embedded Coder software had built-in support for C6000 processors.
The current version of Embedded Coder does not have built-in support for C6000
processors.

To get support for C6000 processors, install Embedded Coder Support Package for Texas
Instruments C6000 Processors, as described in the preceding section.

Updates to support package for Texas Instruments C2000 processors

The updated Embedded Coder Support Package for Texas Instruments C2000 Processors:

• Adds support for Texas Instruments Piccolo F2805x processors.
• Adds an example that shows how to use Control Law Accelerator (CLA).

To install or update this support package, perform the steps described in Install Support
for C2000 Processors.

For more information, see Support Package for Texas Instruments C2000 Processors

Updates to support package for Xilinx Zynq-7000 platform

The updated Embedded Coder Support Package for Xilinx Zynq-7000 Platform:

8-22

http://www.mathworks.com/help/releases/R2014a/ecoder/dm642-evm-dm642evmlib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/dm6437-evm-dm6437evmlib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/dm648-evm-dm648evmlib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/dsp-bios-dspbioslib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/optimization--c28x-dmc-c28xdmclib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/optimization--c64x-dsp-library-tic64dsplib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/scheduling-c6000dspcorelib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/target-communication-targetcommlib.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/getting-started-4.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/getting-started-4.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-texas-instruments-c6000-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-c2000-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-c2000-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-texas-intruments-c2000-processors.html

 Deployment

• Adds support for Xilinx Zynq-7000 All Programmable SoC ZC706 Evaluation Kit.
• Installs the Embedded Coder Support Package for ARM Cortex-A Processors.
• Enables use of the ert.tlc system target file.

To install or update this support package, perform the steps described in Install Support
for Xilinx Zynq-7000 Platform.

For more information, see:

• Support Package for Xilinx Zynq-7000 Platform
• Support Package for ARM Cortex-A Processors

Updates to support package for STMicroelectronics STM32F4 Discovery
board

The updated Embedded Coder Support Package for STMicroelectronics STM32F4-
Discovery Board:

• Adds Memory Copy block, which enables you to read from and write to memory
locations on the Discovery board.

• Adds a Mic in block, which enables you to read audio data from the MEMS
microphone on the Discovery board.

• Adds a Audio out block, which sends the processed audio samples to the audio output
connector on the Discovery board.

• Adds support for multitasking. This means that sub-rates can finish executing after
the next base rate period begins. For example, by giving sub-rates more execution
time, multitasking enables audio algorithms to process larger audio buffers.

To install or update this support package, perform the steps described in Install Support
for STMicroelectronics STM32F4 Discovery Board.

For more information, see Support Package for STMicroelectronics STM32F4 Discovery
Board

Wind River Tornado (VxWorks 5.x) example main program option to be
removed in future release

Using the Templates pane of the Configuration Parameters dialog box, you can
configure an ERT-based model to generate an example main program for the Wind River

8-23

http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-target-for-xilinx-zynq-hardware.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-target-for-xilinx-zynq-hardware.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-discovery-board-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-discovery-board-processors.html
http://www.mathworks.com/help/releases/R2014a/ecoder/stm32f4-discovery-board.html
http://www.mathworks.com/help/releases/R2014a/ecoder/stm32f4-discovery-board.html

R2014a

Tornado® (VxWorks® 5.x) RTOS. This capability will be removed from Embedded Coder
software in a future release. If you generate code with the Templates pane parameter
Target operating system set to VxWorksExample, the software displays a warning
about future removal of the VxWorks 5.x example option.

Compatibility Considerations

In place of VxWorks 5.x support, consider using the Wind River VxWorks support
package. The support package allows you to use the XMakefiles feature to automatically
generate and integrate code with VxWorks 6.7, VxWorks 6.8, and VxWorks 6.9. For more
information, see Support Package for Wind River VxWorks RTOS.

8-24

http://www.mathworks.com/help/releases/R2014a/ecoder/working-with-wind-river-vxworks-rtos.html

 Performance

Performance

Additional options for reuse of global variables

In R2014a, on the Optimization pane, under Signals and Parameters, when you
select Reuse global block outputs, the code generator reuses global variables for block
outputs.

For more information, see Reuse Block Outputs in the Generated Code.

Enhanced global variable optimization options

In R2014a, you can choose a global variable reference optimization for the generated
code.

In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, the Optimize global data access drop-down list provides the following
options:

• None

Use default optimizations.
• Use global to hold temporary results

Maximize use of global variables.
• Minimize global data access

Minimize use of global variables by using local variables to hold intermediate values.

With an Embedded Coder license, if you select an embedded target such as ert.tlc, the
software replaces the Minimize data copies between local and global variables
check box with the Optimize global data access list. When Minimize data copies
between local and global variables is selected, Optimize global data access is set
to Use global to hold temporary results.

For more information, see Optimize Global Variable Usage.

for loops used to initialize arrays to zero

For signals with custom storage, code generation creates a for loop to initialize an array
with matching values, such as all zeroes or ones. This initialization method reduces code

8-25

http://www.mathworks.com/help/releases/R2014a/simulink/gui/optimization-pane-signals-and-parameters.html#bt89tbh
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/reuse-block-outputs.html
http://www.mathworks.com/help/releases/R2014a/simulink/gui/optimization-pane-signals-and-parameters.html#bro1teh-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/optimize-global-variable-usage.html

R2014a

size, especially for larger arrays. Previously, the generated code initialized each element
individually on a separate line.

8-26

 Verification

Verification

Software-in-the-loop simulation for physical models

You can run software-in-the-loop (SIL) simulations of models that use Simscape™ blocks.

SIL verification for subsystem code generation

You can use the SIL block approach to verify code generated from top-models and
subsystems. In R2014a, SIL block verification supports the following features:

• Profiling of task and function execution times.
• Source-level debugging with the Microsoft Visual C++® debugger.

Compatibility Considerations

The table describes SIL block verification features that differ from the previous release.
If you want to revert to previous SIL block behavior, in the Command Window, run:

silblocktype('legacy');

To restore R2014a SIL block behavior, run:

silblocktype('unified');

Feature R2014a Details

Validation checks The software performs, with reference to your host
computer architecture, stricter checks on active Hardware
Implementation settings. If the software detects mismatches,
the software generates errors.

For example, if your host computer is a 64-bit Linux machine, you
cannot specify the following combination of settings:

• Device vendor: Generic
• Device type: 32-bit x86 compatible

To resolve the mismatch errors, do one of the following:

8-27

R2014a

Feature R2014a Details

• In the Configuration Parameters > Code Generation >
Verification pane, select the Enable portable word sizes
check box.

• In the Configuration Parameters > Hardware
Implementation pane, through the Production hardware
or Test hardware section, specify settings that correspond to
your host computer architecture.

The software generates an error if:

• The generated code for the component under test has been
updated since the creation of the SIL block.

• The MATLAB version has changed since the creation of the
SIL block.

GenerateErtSFunction

parameter
The GenerateErtSFunction parameter has the following
command-line behavior:

• set_param(model, 'GenerateErtSFunction', 'on')

generates a warning that the parameter will be removed
in a future release. As a replacement, use the command
set_param(model, 'CreateSILPILBlock', 'SIL').

• set_param(model, 'GenerateErtSFunction', 'off')

does not change the parameter. As a replacement, use the
command set_param(model, 'CreateSILPILBlock',
'None').

• get_param(model, 'GenerateErtSFunction')

returns the value off. As a replacement, use the command
get_param(model, 'CreateSILPILBlock').

Parameter tuning During a SIL block simulation, the software does not support the
tuning of block dialog box parameters. Through the SIL block
dialog box, you can view the list of tunable global parameters

8-28

 Verification

Feature R2014a Details

The software does not support SIL block creation if all of the
following apply:

• Code Generation > Interface > Code interface
packaging is set to Reusable function.

• Optimization > Signals and Parameters > Inline
parameters is not selected.

• The model contains parameters with storage class Auto or
SimulinkGlobal.

In the SIL test harness, for signals that are internal with respect
to the SIL block or models referenced by the SIL block, the
software does not automatically define and initialize signals with
imported storage classes.

Data definition and
initialization

The software does not support automatic data definition and data
transfer for local data stores in the SIL block.

C++ class code
(previously called C+
+ encapsulated code)

For C++ class code:

• You must set External I/O access parameter to None.
• Parameters are not tunable if Block parameter visibility is

private and Block parameter access is either Method or
Inlined method.

You can specify these settings through the Code Generation >
Interface pane.

Code generation
report

The code generation report does not display test harness files for
your SIL block.

Multiword fixed-
point data

At the SIL block interface, the software does not support
multiword fixed-point data types. The software supports:

• At the block interface, single word data types that are wider
than 32 bits.

• Within the SIL block, multiword fixed-point data types.
Boolean data type
replacement

At the SIL block boundary, the software does not support the
replacement of the boolean data type by integers.

8-29

R2014a

Feature R2014a Details

GetSet custom
storage class

At the SIL block boundary, the software does not support vectors
with the GetSet custom storage class.

Asynchronous
sample times

SIL block verification does not support asynchronous sample
times.

Variable-size signals At the SIL block boundary, the software does not support
variable-size signals.

AUTOSAR server
operation

SIL block verification does not support AUTOSAR server
operation components.

SIL and PIL support for fixed-point data type override

At the SIL or PIL component boundary, the software supports signals with data types
that are overridden by the Fixed-Point Tool Data type override parameter.

SIL and PIL support for Invoke AUTOSAR Server Operation block

You can perform SIL and PIL verification of code generated from models that have
Invoke AUTOSAR Server Operation blocks.

SIL and PIL support for structure parameters with storage class
SimulinkGlobal

The software supports the tuning of structure parameters with the SimulinkGlobal
storage class for the following types of simulation:

• Top-model SIL and PIL
• SIL and PIL block

Previously, this feature was supported for only Model block SIL and PIL.

Model block SIL and PIL with export-function and asynchronous function-
call models

In R2014a, you can use Model block SIL and PIL simulations to verify code generated
from:

8-30

 Verification

• Export-function models.
• Models with asynchronous function-call inputs, that is, models that use Asynchronous

Task Specification blocks.

In addition to verification, you can:

• Perform source-level debugging.
• Generate execution time profiles.
• Observe code coverage.

Model block SIL and PIL does not support models with Asynchronous Task Specification
blocks if the models also have blocks that use absolute time.

Model block SIL and PIL with disabled inline parameters

Model block SIL and PIL verification supports R2014a behavior of the InlineParams
parameter with value off. For more information, see Simplified tuning of all parameters
in referenced models.

Compatibility Considerations

Consider the following simulation settings for a top model with a Model block (referenced
model):

• Top-model Simulation > Mode: Normal
• Model block Simulation mode: Software-in-the-loop (SIL) or Processor-

in-the-loop (PIL)

• Referenced model Optimization > Signals and Parameters > Inline parameters
(InlineParams): Not selected (off)

Previously, when executing the Model block in SIL or PIL mode, the software overrode
the off value of InlineParams and used the on value. The override action does not
occur in R2014a. As a result, the tuning behavior for parameters with the Auto storage
class is the same as the tuning behavior for parameters with the SimulinkGlobal
storage class. For more information, see Tunable Parameters and SIL/PIL.

To revert to previous behavior, you must manually set InlineParams to on.

8-31

http://www.mathworks.com/help/releases/R2014a/simulink/release-notes.html#bt8kmid-1
http://www.mathworks.com/help/releases/R2014a/simulink/release-notes.html#bt8kmid-1
http://www.mathworks.com/help/releases/R2014a/ecoder/ug/sil-and-pil-simulation-support-and-limitations.html#brydbkh

R2014a

SIL and PIL block improvements

In Accelerator mode, you can run a simulation with a top model that has SIL or PIL
blocks. Therefore, you can speed up simulation of your model components that are not
SIL or PIL blocks.

The following features are supported for PIL block verification:

• Use of Goto and From blocks across the PIL block boundary.
• Use of virtual buses without bus objects across the PIL block boundary.
• Export of functions from triggered subsystems.

Previously, these features were supported for only SIL block verification.

8-32

 Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

8-33

http://www.mathworks.com/support/bugreports/

R2013b
Version: 6.5

New Features

Bug Fixes

Compatibility Considerations

R2013b

Code Generation from MATLAB Code

Software-in-the-loop verification for MATLAB Coder

Use software-in-the-loop (SIL) execution to verify production-ready source code. SIL
execution involves compiling and running static library code on your host computer.
Through SIL execution, you can reuse test vectors developed for your MATLAB functions
to verify the numerical behavior of static library code.

Previously, verification was restricted to code generated for execution only within
MATLAB. Now, in MATLAB, you can compile and run standalone code on the host
computer through a MATLAB SIL interface.

You can run a SIL execution:

• Using the MATLAB Coder project interface. See Software-in-the-Loop (SIL) Execution
Through the Project Interface.

• From the command line. See Software-in-the-Loop (SIL) Execution From the
Command Line.

Custom generated identifiers for emxArray utility functions

You can customize generated identifiers for emxArray (embeddable mxArray) utility
functions. When you generate code that uses variable-size data, the code generation
software exports utility functions to interact with emxArray data structures. Customize
utility function identifiers to avoid name collisions when a function that uses variable-
size data calls a library function that uses variable-size data.

To customize generated identifiers for emxArray utility functions:

• In a project

On the Project Settings dialog box Code Appearance tab, under Identifier
Format, in the EMX Array Utility Functions field, enter the identifier format. For
example, 'myemxMN'.

• At the command line

Create a code generation configuration object and set the
CustomSymbolStrEMXArrayFcn parameter to the identifier format. For example:

9-2

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-using-the-project-interface.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-using-the-project-interface.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-from-the-command-line.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-from-the-command-line.html

 Code Generation from MATLAB Code

cfg = coder.config('lib');

cfg.CustomSymbolStrEMXArrayFcn='myemxMN';

For details about the identifier format, see coder.EmbeddedCodeConfig.

9-3

http://www.mathworks.com/help/releases/R2013b/coder/ref/coder.embeddedcodeconfigclass.html

R2013b

Model Architecture and Design

Enhanced modeling of AUTOSAR runnables and modes, and improved
ARXML import of internal behavior

R2013b enhances AUTOSAR modeling, component import, and programmatic control.
See also “Support for AUTOSAR release 4.0.3 XML and generated code” on page 9-12.

Enhanced modeling and simulation of AUTOSAR multiple runnables

In previous releases, AUTOSAR multi-runnables were modeled as function-call
subsystems within a wrapper subsystem in a Simulink model. To generate code, you
right-clicked the wrapper subsystem and exported functions.

Beginning in R2013b, you can model AUTOSAR multi-runnables as function-call
subsystems at the top level of a model, without having to use a wrapper subsystem.
When you generate code for the model, each function-call subsystem representing a
runnable appears in the model C code as a callable model entry-point function.

You can simulate multiple runnables in an AUTOSAR software component in multiple
simulation modes. For example:

• For a periodic runnable, you can edit the properties of the function-call subsystem
inport to set the sample time for a periodic event simulation.

• For a non-periodic runnable, you can edit the Data Import/Export pane of the
Configuration Parameters dialog box to set up data loading for an asynchronous event
simulation.

For more information, see Configure Multiple Runnables.

Enhanced ARXML import of AUTOSAR software component internal behavior

The AUTOSAR software component importer tool can automatically import the internal
behavior of a multi-runnable AUTOSAR software component into a Simulink model. You
can use the createComponentAsModel method of the class arxml.importer to specify
that internal behavior be imported. For example:
>> obj = arxml.importer(‘mySWC.arxml’);

>> obj.createComponentAsModel('/pkg/swc', 'CreateInternalBehavior', true)

The importer:

9-4

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-multiple-runnables.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.html

 Model Architecture and Design

• Adds subsystem blocks in the model and maps them to corresponding runnables
imported from the AUTOSAR software component.

• Adds signal lines in the model and maps them to corresponding inter-runnable
variables (IRVs) imported from the AUTOSAR software component.

Ability to model AUTOSAR mode receiver ports and events

R2013b provides the ability to model AUTOSAR mode receiver ports and mode-switch
events in Simulink. Specifically, you can:

• Model the mode receiver port for an AUTOSAR software component using a Simulink
inport.

• Specify a mode-switch event to trigger an initialize function runnable or an exported
function-call subsystem runnable.

For more information, see Configure AUTOSAR Mode Receiver Ports and Events.

AUTOSAR dual-scaled parameter

The new AUTOSAR.DualScaledParameter class extends the capabilities of the
AUTOSAR.Parameter class. You can define a parameter object that stores two scaled
values of the same physical value. Suppose you want to store temperature measurements
as Fahrenheit or Celsius values. You can define a parameter that stores the temperature
in either measurement scale with a computational method to convert between the dual-
scaled values.

You can use AUTOSAR.DualScaledParameter objects in your model for both simulation
and code generation. The parameter computes the internal value before simulation or
code generation via a computational method, which can be a first-order rational function.
This offline computation results in leaner generated code.

Embedded Coder also generates an XML file for use by a calibration tool. This file
contains the dual-scaled values and the corresponding computational method.

For more information, see AUTOSAR.DualScaledParameter.

Programmatic interface for configuring AUTOSAR properties and Simulink-AUTOSAR mapping

R2013b provides a programmatic interface for configuring AUTOSAR properties and
Simulink mapping information using MATLAB functions. You can programmatically get,
set, add, and remove the same component properties and mapping information displayed

9-5

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-autosar-mode-receiver-ports-and-events.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/autosar.dualscaledparameterclass.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/autosar.dualscaledparameterclass.html

R2013b

in the AUTOSAR Properties Explorer and Simulink-AUTOSAR Mapping Explorer
views of the Configure AUTOSAR Interface dialog box.

In the function syntax, you can use fully or partially qualified names to locate
properties. For example, the following code sets the IsService property for
the sender-receiver interface located at path Interface1 in the example model
rtwdemo_autosar_multirunnables to true. In this case, specifying the name
Interface1 is enough to locate the property.
>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

>> set(propObj, 'Interface1', 'IsService', true);

If you added a sender-receiver interface to the component, you would specify a fully
qualified path, for example:
>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

>> addSRInterface(propObj, '/pkg/if/Interface3', 'IsService', true);

The new AUTOSAR configuration functions also validate syntax and semantics for
requested AUTOSAR property and mapping changes.

Reorganization of Model Advisor Embedded Coder checks

Checks previously provided with Simulink in the Model Advisor Embedded Coder folder
are now available with either Simulink Coder or Embedded Coder. For a list of checks
available with each product, see:

• Simulink Coder Checks
• Embedded Coder Checks

9-6

http://www.mathworks.com/help/releases/R2013b/rtw/ref/embedded-codersimulink-coder-checks.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html

 Model Architecture and Design

Model Advisor fixed-point checks with additional coverage and
optimization awareness

The Model Advisor fixed-point checks now cover blocks in base Simulink and System
Toolboxes, the MATLAB Function block, System objects, Stateflow, and fi objects. These
improved checks take into consideration model settings such as hardware configuration
and code generation settings. These updated checks also avoid false negative results.

For more information, see:

• Identify blocks that generate expensive rounding code
• Identify questionable fixed-point operations
• Identify blocks that generate expensive fixed-point and saturation code

Protected model Web view

In R2013b, a read-only Web view of protected models is now available.

To include the Web view in the protected model, right-click the model reference block,
and then select Subsystem & Model Reference > Create Protected Model for
Selected Model Block. Select the Open read-only view of model check box and click
Create.

To enter a password, right-click the protected model shield icon and select Authorize.
Enter the password and click OK. To show the Web view for a protected model, right-
click the shield icon of the protected model and select Show Web view.

RTW.AutosarInterface class to be removed in a future release

In R2013b, a new programmatic interface for configuring AUTOSAR properties and
mapping information for a Simulink model has replaced the RTW.AutosarInterface
class used in earlier releases. The RTW.AutosarInterface class will be removed in a
future release.

Compatibility Considerations

If you are using the RTW.AutosarInterface class and methods to programmatically
control and validate the AUTOSAR configuration of a model, you should migrate to using

9-7

http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1

R2013b

the new AUTOSAR property and mapping functions listed in AUTOSAR Component
Development. The new functions are designed to work with the component properties
and mapping information displayed in the AUTOSAR Properties Explorer and
Simulink-AUTOSAR Mapping Explorer views of the Configure AUTOSAR Interface
dialog box.

Subsystem methods of arxml.importer class to be removed in a future
release

Beginning in R2013b, you can model AUTOSAR multi-runnables as function-call
subsystems at the top level of a model, rather than as function-call subsystems within a
wrapper subsystem that represents the AUTOSAR software component. The following
methods of the arxml.importer class will be removed in a future release:

• arxml.importer.createComponentAsSubsystem — Create AUTOSAR atomic software
component as Simulink atomic subsystem

• arxml.importer.createOperationAsConfigurableSubsystems — Create configurable
Simulink subsystem library for client-server operation

Compatibility Considerations

If you are using createComponentAsSubsystem or
createOperationAsConfigurableSubsystems, you should migrate to using the top
model oriented approach described in Configure Multiple Runnables.

9-8

http://www.mathworks.com/help/releases/R2013b/ecoder/autosar-component-development.html
http://www.mathworks.com/help/releases/R2013b/ecoder/autosar-component-development.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importerclass.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createcomponentassubsystem.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createoperationasconfigurablesubsystems.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-multiple-runnables.html

 Data, Function, and File Definition

Data, Function, and File Definition

Simplified global types file rtwtypes.h with invariant content

Previously, during rebuilds of a model hierarchy, the code generation process might have
updated the content of the shared header file rtwtypes.h. If a model in the hierarchy
changed, or the code generator detected a new model in the hierarchy, rtwtypes.h could
be overwritten. When rtwtypes.h changes, you must recompile the code.

In R2013b, the code generator separates some of the rtwtypes.h content into separate
header files that are generated only when certain model settings or components are
present. Separate header files are generated, however, rtwtypes.h is unchanged.
When certain model settings or components are present, the code generator creates the
following new header files.

Model setting or component Content generated to header file

Multiword data types multiword_types.h

Model reference target model_reference_types.h

Model reference blocks model_reference_types.h

MAT-file logging is selected builtin_typeid_types.h

multiword_types.h

C API builtin_typeid_types.h

Interface is set to External mode multiword_types.h

For more information on files created during code generation, see Files Created During
the Build Process.

C++ encapsulation support for name space control and template-based
file customization

Name space control for scoping C++ encapsulated model classes

R2013b adds name space control for scoping model classes generated using C+
+ encapsulation. You can use the Namespace parameter in the Configure C++
Encapsulation Interface dialog box to specify a name space for a model class. If specified,
the name space is emitted in the generated code for the model class. To scope the C++

9-9

http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq9khar-1
http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq26gyk-1
http://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html#brufp8r-17
http://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html#brufp8r-17

R2013b

encapsulated model classes in a model reference hierarchy, you can specify a different
name space for each referenced model. For more information, see Use Name Spaces to
Scope C++ Encapsulated Model Classes.

For more information on configuring C++ encapsulated model classes, see Configure C++
Encapsulation Interfaces Using Graphical Interfaces.

Template-based customization of encapsulated C++ header and source files

Embedded Coder now supports the Code Generation > Templates pane of the
Configuration Parameters dialog box for models that use C++ encapsulation. You can use
the code and data templates to control the appearance of C++ code in generated model
header and source files. For example, you can customize file and function banners to
meet organization standards.

However, the following template file features that are supported for other language
selections are not supported for C++ encapsulation:

• Free-form text outside template sections
• Custom tokens
• TLC commands (<! > tokens)

Shared utility naming control

You can customize a shared utility name. On the Code Generation > Symbols pane
enter text and formatting characters in the Shared utilities box.

The default token string is NC.

Token Description

$N The code generator inserts the shared
utility function name.

$C When the combined text and utility name
exceed the maximum identifier length, the
code generator inserts an eight-character
conditional checksum. This checksum
ensures that the name is unique.

If the shared utility identifier exceeds the maximum length, characters are deleted from
$N and the eight-character conditional checksum is inserted.

9-10

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bt3qmd5-1
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bt3qmd5-1
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brr1mb6-1
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brr1mb6-1

 Data, Function, and File Definition

For more information see

• Shared utilities
• Identifier Format Control
• Exceptions to Identifier Formatting Conventions

Expanded support for identifier names

When specifying temporary local variables, you can now use $A to insert the data type
acronym into your variable name. This capability provides you with a more consistent
naming scheme.

• You can include $A in naming for local temporary variables where previously it was
supported only for local block output variables and field names of global types. For
more information, see Identifier Format Control, Local temporary variables and Field
name of global types.

• You can customize identifier names by specifying $A which maps to the data type
replacement setting. Previously the generated code changed the types, but not the
identifier names. For more information, see Data Type Replacement.

Terminate function setting honored for subsystems and referenced models

In previous releases, model builds did not uniformly honor the setting of the model option
Terminate function required when generating code for subsystems or referenced
models. A model build could generate termination code for a subsystem or referenced
model when Terminate function required was cleared.

Beginning in R2013b, model builds honor the setting of Terminate function required
for subsystems and referenced models. When Terminate function required is cleared,
the build suppresses subsystem and referenced model termination code.

Compatibility Considerations

If an existing model relies on subsystem or referenced model termination code being
generated despite the model option Terminate function required being cleared,
consider turning on the Terminate function required option.

9-11

http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#btzzwi5-1
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/specify-identifier-formats.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/exceptions-to-identifier-formatting-conventions.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/specify-identifier-formats.html
http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#bq9i3s4-1
http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#bq9i3lh-1
http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#bq9i3lh-1
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/data-type-replacement.html

R2013b

Code Generation

Support for AUTOSAR release 4.0.3 XML and generated code

R2013b adds AUTOSAR release 4.0.3 support, as follows:

• ARXML import and export support AUTOSAR release 4.0.3 XML files.
• The AUTOSAR target generates AUTOSAR release 4.0.3 compliant C code.
• Selecting the value 4.0 for the AUTOSAR model parameter Generate XML file

from schema version now selects schema revision 4.0.3, rather than 4.0.2. Also, the
parameter now defaults to value 4.0, rather than 3.0 or an earlier version.

See also “Enhanced modeling of AUTOSAR runnables and modes, and improved ARXML
import of internal behavior” on page 9-4.

Indent style and size control for code generation

R2013b adds options for customizing code appearance. The following new parameters are
located in the Configuration Parameters dialog box, on the Code Generation > Code
Style pane.

• Indent style: Specify K&R or Allman style for the placement of braces.
• Indent size: Specify the number of characters per indent level. Choose from 2–8

characters.

For more information on configuring code style parameters, see Control Code Style.

Subsystem functions return value in generated code

In the Subsystem Block Parameters dialog box, on the Code Generation tab, if you
specify

• The Function packaging parameter for your subsystem to Nonreusable
function

• The Function interface parameter to Allow arguments

The code generator might generate a subsystem function that returns a scalar output
value. Previously, subsystem functions returned void.

9-12

http://www.mathworks.com/help/releases/R2013b/ecoder/ref/code-generation-pane-autosar-code-generation-options.html#brju4q8-2
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/code-generation-pane-autosar-code-generation-options.html#brju4q8-2
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/control-code-style.html

 Code Generation

Model reference step function void input and output arguments

Since R2010a, when a reusable subsystem fed the outport, code generation might create
output arguments for model reference step functions.

In R2013b, code generation produces model reference step functions with void input and
void output when the model reference block:

• Is a single instance.
• Has exported globals on its input and output ports.

9-13

R2013b

Deployment

ARM Cortex-M optimized code with STM32F4-Discovery board example

Build ARM Cortex-M optimized executables from Simulink models. Automatically run
executables on STMicroelectronics STM32F4-Discovery boards.

Note: In addition to the basic math optimizations provided by Embedded Coder Support
Package for ARM Cortex-M Processors, you can obtain advanced optimizations for ARM
DSP filters using the DSP System Toolbox™ Support Package for ARM Cortex Processors.
For more information, see the DSP System Toolbox release notes for R2013b.

Support package for ARM Cortex processors

Use the Embedded Coder Support Package for ARM Cortex-M Processors to:

• Build and run CMSIS-optimized executables on ARM Cortex-M QEMU emulator.
• Use the capabilities and features described in Supported Features for ARM Cortex-M

Processors

To download and install this feature, perform the steps described in Install Support for
ARM Cortex-M Processors.

For more information, see the Support Package for ARM Cortex-M Processors topic.

Support package for STMicroelectronics STM32F4-Discovery Board

Use the Embedded Coder Support Package for STMicroelectronics STM32F4-Discovery
Board to automatically build (makefile-based), download, and run an executable on
Discovery board processors.

Use blocks from the Embedded Coder Support Package for STMicroelectronics STM32F4-
Discovery Board block library:

• ADC — Convert analog signal to digital signal.
• GPIO Read — Configure input pin to read pin status.
• GPIO Write — Configure output pin to output pin status.

This support package automatically installs the following third-party software:

9-14

http://www.mathworks.com/help/releases/R2013b/dsp/release-notes.html#btw0g6x
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/supported-features-for-arm-cortex-m-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/supported-features-for-arm-cortex-m-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-arm-cortex-m-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-arm-cortex-m-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/working-with-arm-cortex-m-processors.html

 Deployment

• STM32F4DISCOVERY peripheral firmware examples http://www.st.com/internet/
evalboard/product/252419.jsp

• OpenOCD http://www.freddiechopin.pl/en/download/category/4-openocd
• GNU Tools for ARM Embedded Processors https://launchpad.net/gcc-arm-embedded
• QEMU http://lassauge.free.fr/qemu/
• CMSIS http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-

software-interface-standard.php

To download and install this support package, perform the steps described in Install
Support for STMicroelectronics STM32F4 Discovery Board.

For more information, see the Support Package for STMicroelectronics STM32F4
Discovery Board topic.

Wind River VxWorks 6.9 support

You can automatically generate code from Simulink models and execute it on VxWorks
6.9 RTOS.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install the Embedded Coder Support Package for

Wind River VxWorks RTOS.

This feature includes the Embedded Coder Support Package for Wind River VxWorks
RTOS block library, which contains the following blocks:

• UDP Send and UDP Receive — Enable UDP communication with networked devices
using an Ethernet port.

• VxWorks Task — Spawn task function as a separate VxWorks thread.

For more information , see the Support Package for Wind River VxWorks RTOS topic.

Compatibility Considerations

Previous versions of Embedded Coder software had built-in support for the VxWorks
6.7 and 6.8. The current version of Embedded Coder does not have built-in support for
VxWorks 6.7 and 6.8. To get support for VxWorks 6.7, 6.8, and 6.9, install the Embedded
Coder Support Package for Wind River VxWorks RTOS.

9-15

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-discovery-board-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-discovery-board-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/stm32f4-discovery-board.html
http://www.mathworks.com/help/releases/R2013b/ecoder/stm32f4-discovery-board.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpsend.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpreceive.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/vxworkstask.html
http://www.mathworks.com/help/releases/R2013b/ecoder/working-with-wind-river-vxworks-rtos.html

R2013b

Support package for Texas Instruments C2000 processors

You can automatically generate code from Simulink models and execute it on Texas
Instruments C2000 processors.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install Embedded Coder Support Package for Texas

Instruments C2000 Processors.

This feature includes the Embedded Coder Support Package for Texas Instruments
C2000 Processors block library, which contains:

• C2802x (c2802xlib) block library
• C2803x (c2803xlib) block library
• C2806x (c2806xlib) block library
• C280x (c280xlib) block library
• C281x (c281xlib) block library
• C2834x (c2834xlib) block library
• C28x3x (c2833xlib) block library
• Memory Operations block library
• Optimization — C28x DMC (c28xdmclib) block library
• Optimization — C28x IQmath (tiiqmathlib) block library
• RTDX Instrumentation (rtdxBlocks) block library
• Scheduling block library
• Target Communication block library

For more information about this feature, see the Support Package for Texas Instruments
C2000 Processors topic.

Compatibility Considerations

Previous versions of Embedded Coder software had built-in support for C2000 processors.
The current version of Embedded Coder does not have built-in support for C2000
processors.

9-16

http://www.mathworks.com/help/releases/R2013b/ecoder/c2802x-c2802xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c2803x-c2803xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c2806x-c2806xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c280x-c280xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c281x-c281xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c2834x-c2834xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/c28x3x-c2833xlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/memory-operations-4.html
http://www.mathworks.com/help/releases/R2013b/ecoder/optimization--c28x-dmc-c28xdmclib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/optimization--c28x-iqmath-tiiqmathlib.html
http://www.mathworks.com/help/releases/R2013b/ecoder/rtdx-instrumentation-rtdxblocks.html
http://www.mathworks.com/help/releases/R2013b/ecoder/scheduling-6.html
http://www.mathworks.com/help/releases/R2013b/ecoder/target-communication.html
http://www.mathworks.com/help/releases/R2013b/ecoder/working-with-texas-intruments-c2000-processors.html
http://www.mathworks.com/help/releases/R2013b/ecoder/working-with-texas-intruments-c2000-processors.html

 Deployment

To get support for C2000 processors, install Embedded Coder Support Package for Texas
Instruments C2000 Processors, as described in the preceding section.

Coder Target pane in Configuration Parameters dialog box

You can use the Coder Target pane to configure target hardware settings for your model.

This Coder Target pane has a the same name as the Code Generation > Coder Target
sub-pane that appears when the System target file parameter is idelink_ert.tlc or
idelink_grt.tlc.

To use the Coder Target pane:

1 Open Configuration Parameter dialog box by entering Ctrl+E.
2 Select the Code Generation pane.

9-17

R2013b

3 Set the System target file parameter to ert.tlc. Click Apply.
4 Set the Target hardware parameter to match your target hardware.

The Configuration Parameters dialog box displays the Coder Target pane with
parameters for the specified target hardware.

ZedBoard hardware support

You can automatically generate code from Simulink models and execute it on ZedBoard™
hardware. Specifically, you can execute the code in the Linux environment on the
ZedBoard’s ARM Cortex-A9 processor.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install Embedded Coder Support Package for

Xilinx Zynq-7000 Platform.

This feature includes the Embedded Coder Support Package for Xilinx Zynq-7000
Platform block library, which contains:

• UDP Send and UDP Receive — Enable UDP communication with networked devices
using an Ethernet port.

• Linux Task — Spawns task function as separate Linux thread.

For more information, see the Support Package for Xilinx Zynq-7000 Platform topic.

Note: For more information about using HDL Coder™ software with the FPGA on the
Avnet® ZedBoard hardware, see IP core integration into Xilinx EDK project for ZC702
and ZedBoard

Simplified multi-instance code interface and dynamic memory allocation
for ERT targets

Embedded Coder now provides a simplified multi-instance code interface, with a dynamic
memory allocation option, for ERT-based models. The new capabilities support easier
integration of multi-instance code into applications. The new interface to generated
model code features:

9-18

http://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpsend.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpreceive.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/linuxtask.html
http://www.mathworks.com/help/releases/R2013b/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2013b/hdlcoder/release-notes.html#bt0ijp2-1
http://www.mathworks.com/help/releases/R2013b/hdlcoder/release-notes.html#bt0ijp2-1

 Deployment

• Use of a single model entry-point function argument for instance data such as signals,
states, parameters, and optionally root-level input and output.

• Configurable argument list for model root-level input and output.
• Option to generate a function that dynamically allocates memory for model instance

data.

For more information, see model option Generate reusable code, Entry-Point Functions
and Scheduling, and Generate Reentrant Code from a Top-Level Model.

For an example of an ERT-based model configured to generate reusable, reentrant code,
see the example model rtwdemo_reusable.

Compatibility Considerations

Beginning in R2013b, when you select Generate reusable code for an ERT-based
model, model data structures, such as Block I/O, DWork, and Parameters, are packaged
into the real-time model data structure. The real-time model data structure is passed in
a single argument to the model entry-point functions model_initialize, model_step, and
model_terminate.

In earlier releases, when you selected Generate reusable code for an ERT-based
model, model data structures were passed in separately as arguments to the model entry-
point functions. The number of generated arguments varied, depending on the data
requirements of the model.

If you have code that calls reusable code generated from ERT-based models, you should
update the model entry-point function calls to use the new, simplified interface.

For example, consider model entry-point functions previously called as follows:

/* Step the model */

rtwdemo_reusable_step(&rtP, &rtDWork, rtU_In1, rtU_In2, &rtY_Out1);

/* Initialize model */

rtwdemo_reusable_initialize();

In R2013b or later, the corresponding calls might be as follows:

/* Step the model */

rtwdemo_reusable_step(rtM, rtU_In1, rtU_In2, &rtY_Out1);

/* Initialize model */

9-19

http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq9kdp4-1
http://www.mathworks.com/help/releases/R2013b/rtw/ug/entry-point-functions-and-scheduling.html
http://www.mathworks.com/help/releases/R2013b/rtw/ug/entry-point-functions-and-scheduling.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/generate-reusable-code-for-a-top-level-model.html
http://www.mathworks.com/help/releases/R2013b/rtw/ref/model_initialize.html
http://www.mathworks.com/help/releases/R2013b/rtw/ref/model_step.html
http://www.mathworks.com/help/releases/R2013b/rtw/ref/model_terminate.html

R2013b

rtwdemo_reusable_initialize(rtM);

Beginning in R2013b, after selecting Generate reusable code, you also can select
the model option Generate function to allocate model data, which generates a function
to dynamically allocate memory (using malloc) for model data structures. If you do
not select this option, the model instance data must be allocated either statically or
dynamically by the calling code. For this case, an additional requirement beginning in
R2013b is that pointers to the individual data structures (such as Block IO, DWork, and
Parameters) must be set up in the top-level real-time model data structure.

Addition and Subtraction Operator Code Replacement Assumes Cast-
Before-Operation Behavior

The type of algorithm that addition and subtraction operators apply for a given math
library can be characterized as cast-before-operation (CBO) or cast-after-operation
(CAO). In the CBO case, prior to performing the operation, the algorithm type casts input
values to the output type. If the output data type cannot exactly represent the input
values, losses can occur as a result of the cast to the output type. Additional loss can
occur when the result of the operation is cast to the final output type.

In the CAO case, the algorithm computes the ideal result of the operation on the inputs
and then type casts the result to the output data type. Loss occurs during the type cast.
This algorithm behaves similarly to the C language except when the signedness of
the operands does not match. For example, when you add a signed long operand to an
unsigned long operand, standard C language rules convert the signed long operand to an
unsigned long operand. The result is a value that is not ideal.

Starting in R2013b, the code generator assumes CBO behavior for replacement code
defined for addition and subtraction operators.

Compatibility Considerations

In previous releases, the code replacement software did not take the Sum block
configuration into account when making a replacement. Starting in R2013b, the code
replacement software considers the Sum block for replacement if the block meets the
CBO constraint. To meet that constraint, the block must be configured in one of the
following ways:

• Input and output are the same type and the size of the accumulator type is equal to or
greater than the size of that type

9-20

http://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#btyv0ty-1

 Deployment

• Input and output types differ, but the size of the accumulator type is equal to the size
of the output type

If the Sum block does not meet the CBO constraint, a replacement that occurred in a
previous release might not loccur.

Addition functions in libraries that implement full-precision addition, such as the ANSI
C library, are not suitable as replacement functions.

When using code replacements, validate that the numerical results of the generated code
match the results of a processor-in-the-loop (PIL) simulation.

9-21

R2013b

Performance

Reusable custom storage class to reduce root I/O memory

In R2013b, if a pair of root-level model input and output signals uses the same storage
class specification, code generation can reuse the root I/O signals in the generated code.
The storage class specifications are the new custom storage class Reusable(Custom) or
a custom storage class created from Reusable(Custom). Reusing code for root input and
output signals allows for further optimizations that reduce data copies, global variables,
and ROM/RAM size. For more information, see Signal Reuse for Root-Level Model Inputs
and Outputs.

Subsystem functions reused independently of output connection

Previously, code generation used different criteria to determine when to reuse code.

• Code generation used the connection status to help determine the number of
subsystem functions to generate.

• Code generation reused subsystem functions with varied connection status only when
the outputs were passed by structure reference.

Code generation can now reuse subsystem functions regardless of:

• The connection state of the outputs. You can specify multiple outputs as unconnected
or terminated across subsystems.

• Whether the reusable system outputs are passed as Structure reference or
Individual arguments.

9-22

http://www.mathworks.com/help/releases/R2013b/ecoder/ug/signal-reuse-for-root-level-model-inputs-and-outputs.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ug/signal-reuse-for-root-level-model-inputs-and-outputs.html

 Verification

Verification

SIL and PIL support fixed-point data types wider than 32 bits

Use software-in-the loop (SIL) and processor-in-the-loop (PIL) simulations to verify
generated code that contains fixed-point data types wider than 32 bits.

A number of host and target platforms support 64-bit native data types. On these
platforms, implementing a fixed-point data type wider than 32 bits as a single word is
more efficient than the multiword fixed-point approach. Previously, data types wider
than 32 bits, including multiword fixed-point, were supported internally within a SIL
or PIL component. However, the data types were not supported in the communication
between the MATLAB and Simulink host and the SIL or PIL component on the target.
Now, the software supports 33-bit to 64-bit single word, fixed-point data types in host-
target communication.

Data types that SIL and PIL support include the following:

• 64-bit long and long long
• 64-bit execution profiling timer data type — Previously, the target returned only the

32 least significant bits to the MATLAB host, with the possibility of timer wrapping.
• int64 and uint64 — Used in MATLAB Coder SIL execution.

The following constraints apply:

• For 64-bit data type support, the data type must be representable as long or
long long on the MATLAB host and the target. Otherwise, the software uses the
multiword fixed-point approach, which SIL and PIL do not support.

• 32-bit Windows does not support 64-bit long or long long data types. In this case,
the software uses the multiword fixed-point approach which SIL and PIL do not
support.

• The software does not support the 40-bit long data type of the TI’s C6000 target.

Through the Configuration > Hardware Implementation pane, you can enable
support for the 64-bit long long data type. However, for data types with widths
between 33 and 40 bits (inclusive), the software implements the data types using the
40-bit long data type which SIL and PIL do not support.

9-23

R2013b

SIL and PIL protected model support

Software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation modes are now
supported for protected models. You can run models that contain protected models in SIL
and PIL simulation modes if the protected models support code generation. In previous
releases, the only supported simulation modes were Normal and Accelerator.

Code execution profiling improvements

Standalone code generation with function profiling

You can generate executable code (Ctrl+B) for your model even if function profiling is
enabled. The software produces the following warning message:

Warning: Code profiling instrumentation is not supported for standalone

builds (Ctrl+B). You can run the executable, but no profiling data will be

collected.

Previously, if function profiling was enabled for a SIL or PIL simulation, building your
model produced an error message. For example:

Code profiling instrumentation within the generated code is not supported

for top model standalone builds (Ctrl+B). You cannot build the top model

rtwdemo_sil_modelblock in standalone mode because rtwdemo_sil_modelblock

has code profiling instrumentation enabled. You must either simulate

rtwdemo_sil_modelblock in SIL or PIL mode or disable code profiling

instrumentation for rtwdemo_sil_modelblock. To disable code profiling

instrumentation, clear the check box Simulation > Configuration Parameters

> Code Generation > Verification > Measure function execution times.

For information about obtaining execution time profiles for generated code, see Code
Execution Profiling.

Display of code section invocations

You can display code section invocations over the execution timeline.

9-24

http://www.mathworks.com/help/releases/R2013b/ecoder/code-execution-profiling-2.html
http://www.mathworks.com/help/releases/R2013b/ecoder/code-execution-profiling-2.html

 Verification

For more information, see timeline.

SampleOffset and SamplePeriod removed

The coder.profile.ExecutionTimeSection SampleOffset and SamplePeriod
methods have been removed.

9-25

http://www.mathworks.com/help/releases/R2013b/ecoder/ref/timeline.html

R2013b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

9-26

http://www.mathworks.com/support/bugreports/

R2013a
Version: 6.4

New Features

Bug Fixes

Compatibility Considerations

R2013a

Code Generation from MATLAB Code

Improved code replacement traceability for MATLAB code generation

In the R2013a release, there is now improved code replacement traceability for
standalone code generated using MATLAB Coder. This capability is not available for
generated MEX functions. When you choose to include code replacements in the code
generation report:

• The code generation report includes a link to the Code Replacements Report.
• Code replacement trace information is generated for viewing in the Trace

Information tab of the Code Replacement Viewer.
• The code replacement report lists replacement functions and their associated

MATLAB code.

You can use the code replacement report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the MATLAB code that triggered the

replacement.

For more information, see Enable the Code Replacements Report and Viewing Code
Replacements in the Generated Code.

Static code metrics report for MATLAB Coder

When you generate standalone C code with MATLAB Coder, the HTML code generation
report now includes a static code metrics report. The static code metrics report is not
available for generated MEX functions.

The static code metrics include the:

• Number of source code files.
• Number of lines of code.
• List of global variables.
• Functions in a call tree format.
• Estimated stack size required for a function.

10-2

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/enable-the-code-replacements-report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html

 Code Generation from MATLAB Code

You can use the information in the static code metrics report to:

• Find the number of files and lines of code in each file.
• Estimate the number of lines of code and stack usage per function.
• Compare how many files, functions, variables, and lines of code are generated every

time you change the MATLAB algorithm.
• Determine a target platform and allocation of RAM to the stack, based on the size of

global variables plus the estimated stack size.
• Determine possible performance slow points, such as the largest global variables or

the most costly call path in terms of stack usage.
• View the cyclomatic complexity of a function, which counts the number of linearly

independent paths through a function.
• View the function call tree.
• Determine the longest call path to estimate the worst-case execution timing.
• View how target functions, provided by the selected code replacement library, are

used in the generated code.

For more information, see Generate a Static Code Metrics Report for MATLAB Code and
Static Code Metrics.

10-3

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html

R2013a

Model Architecture and Design

AUTOSAR user interface and round trip ARXML file import and export
improvements

Improved graphical user interfaces for AUTOSAR configuration

Embedded Coder software provides graphical user interfaces that allow you to add
AUTOSAR elements to a Simulink model and map model components and interfaces to
AUTOSAR components and interfaces. R2013a provides several improvements to the
graphical user interfaces for AUTOSAR configuration:

• The Configure AUTOSAR Interface dialog box now provides separate Simulink-
AUTOSAR Mapping and AUTOSAR Properties Explorers, which clearly
distinguish mapping and editing activities.

• In both the Mapping and Properties Explorers:

• Parameters that previously required text entry now offer selectable values or
attributes.

• Displays are more scalable (accommodating more elements) with fewer refresh
issues.

• Graphical layout reflects logical relationships between entities.
• Filtering enhances element selection and modification.

• The Properties Explorer provides intuitive double-click and add/remove operations for
configuring AUTOSAR ports, interfaces, data elements, runnables, and events.

• New check and synchronization icons provide single-click access to AUTOSAR
configuration validation and Simulink model synchronization.

• A new AUTOSAR Component Builder dialog box allows you to interactively create a
customized AUTOSAR component.

To explore the Configure AUTOSAR Interface dialog box, open a model that is already
configured for AUTOSAR (such as the example model rtwdemo_autosar_counter).
Select Code > C/C++ Code > Configure Model as AUTOSAR Component to open
the dialog box. From there, you can select either the Simulink-AUTOSAR Mapping
Explorer or the AUTOSAR Properties Explorer.

10-4

 Model Architecture and Design

To explore the AUTOSAR Component Builder dialog box, open a model that is not
already configured for AUTOSAR (such as the example model rtwdemo_counter).
Select the AUTOSAR target (autosar.tlc) for the model, and then select Code >
C/C++ Code > Configure Model as AUTOSAR Component. This action opens a
dialog box that allows you to select between creating a default AUTOSAR component
or interactively creating an AUTOSAR component. To open the AUTOSAR Component
Builder dialog box, click Create Component Interactively.

10-5

R2013a

Round-trip preservation of AUTOSAR elements and UUIDs

To help support the round trip of AUTOSAR elements between an AUTOSAR authoring
tool (AAT) and the Simulink model-based design environment, Embedded Coder now
preserves AUTOSAR elements and their UUIDs across arxml import and export, as
follows:

• When arxml files created by an AAT are imported into a Simulink model, AUTOSAR
element information is preserved, including UUIDs (for Identifiables), properties, and
reference packages.

• When arxml files are exported from a Simulink model, the elements are generated
back into arxml with their UUIDs and other information preserved.

As a result, the arxml files exported from Simulink can more easily be merged back
into the AAT environment. Existing elements retain their UUIDs, while new elements
created in Simulink get new UUIDs.

10-6

 Model Architecture and Design

Code generation for variable-size scalar signals

Previously, a model that used a variable-size scalar signal (width equals 1) would cause
an error during a model update. This limitation has been removed and the model now
simulates and generates code for a variable-size scalar signal.

10-7

R2013a

Data, Function, and File Definition

Shortened system-generated identifier names

In R2013a, you have the option to shorten the system-generated identifier names to
allow more space for user names. This option also provides a more predictable and
consistent naming system that uses camel case, no underscores or plurals, and consistent
abbreviations for both a type and a variable.

To use the new names, open the Configuration Parameters dialog box, and on the Code
Generation > Symbols pane, set the System-generated identifiers parameter to
Shortened. When you open a new model in R2013a, the default setting for System-
generated identifiers is set to Shortened. When you open an existing model in
R2013a, System-generated identifiers is set as Classic. With this setting, the
system-generated identifiers use the names from previous releases.

For more information, see System-generated identifiers and Customize Generated
Identifier Naming Rules.

Improved data initialization with custom storage classes

Previously, Embedded Coder generated initialization code for these two cases, even
though the DataInitialization parameter was set to None or Static.

1 Initial output of an Enabled Subsystem configured to reset when it is enabled.
2 Fixed-point data with bias, which cannot have zero ground value

Now, Embedded Coder will not generate dynamic initialization code for data that uses a
custom storage class whose DataInitialization parameter is set to None or Static.

Default specification for global types

Previously, on the Configuration Parameters Symbol pane, the default for Global types
was NR$M. In R2013a, for new models, the default for Global types is NR$M_T. For
existing models opened in R2013a, Global types does not change.

Subsystem block parameter Function packaging option renamed

In the Subsystem block parameter dialog box, on the Code Generation tab, the
Function packaging option Function is renamed to Nonreusable function.

10-8

http://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-symbols.html#btqlcrf-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#brp1xt9-91

 Code Generation

Code Generation

Model Advisor checks for code generation

The Model Advisor By Product folder contains the following checks to replace Identify
questionable blocks within the specified system:

• Check for blocks not supported by code generation
• Check for blocks not recommended for C/C++ production code deployment

To display the By Product folder, in the Model Advisor window select Settings >
Preferences. In the Model Advisor Preferences dialog box, select Show By Product
Folder.

10-9

http://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhno-1
http://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1

R2013a

Deployment

Concurrent execution API to target embedded multicore platforms

Semaphore and mutex code replacement for multicore target environments

Embedded Coder software now provides Simulink code replacement support for the
following semaphore and mutex operations.
Mutex Destroy
Mutex Init
Mutex Lock
Mutex Unlock
Semaphore Destroy
Semaphore Init
Semaphore Post
Semaphore Wait

Semaphore and mutex code replacement is supported for:

• Simulink code generation for data transfer between tasks
• Code generation targets

Semaphore and mutex code replacement is not supported for:

• Stateflow charts, MATLAB Function blocks, and MATLAB functions
• Simulation targets

For more information, see Map Semaphore or Mutex Operations to Target-Specific
Implementations.

Hardware timer function replacement

You can create a hardware-specific timer object for SIL and PIL simulations with your
hardware target. See Specification of hardware timer through the Code Replacement Tool
in “Code execution profiling improvements” on page 10-20.

10-10

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/create-code-replacement-tables.html#bts61yy-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/create-code-replacement-tables.html#bts61yy-1

 Deployment

Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog box

The contents of the Target Preferences block have been relocated to the new Target
Hardware Resources tab on the Coder Target pane in the Configuration Parameters
dialog box.

The Target Preferences block has been removed from the Embedded Targets block
library.

If you open a model that contains a Target Preferences block, a warning instructs you
that the block is optional and can be removed from your model.

10-11

R2013a

Opening the Target Preferences block automatically displays the Target Hardware
Resources tab.

For instructions on how to use Target Hardware Resources to build and run a model
on target hardware, see Model Setup.

For information about specific parameters and settings, see Code Generation: Coder
Target Pane.

Downloadable support and blocks for Analog Devices DSPs

If you have an Embedded Coder license, you can install support for Analog Devices
VisualDSP++ IDE and DSPs as described in Install Support for Analog Devices DSPs.
Support for Analog Devices VisualDSP++ IDE and DSPs includes the same capabilities
that were previously available.

Use the “Embedded Coder Support Package for Analog Devices DSPs” block library to
manage peripherals, scheduling, and memory on Blackfin®, SHARC®, and TigerSHARC®

DSPs.

To get these capabilities, in a MATLAB Command Window, enter
supportPackageInstaller. Then, use Support Package Installer to install the support
package for Analog Devices DSPs. For more information, see the Working with Analog
Devices VisualDSP++ IDE topic.

After installing the support package, you can open the block library. In the MATLAB
Command Window, enter adivdsplib. The “Embedded Coder Support Package for
Analog Devices DSPs” block library is also available in the Simulink Library Browser.

Compatibility Considerations

Previously, installing Embedded Coder software automatically installed support and
blocks for Analog Devices DSPs. Effective this release, you must use Support Package
Installer to install support before using Embedded Coder with Analog Devices DSPs.

Texas Instruments C2000 Clocking Options

In the Configuration Parameters dialog box, on the Peripherals tab, the new Clocking
options help you to configure different timers that you use in the processor peripherals.

10-12

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/model-setup.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/code-generation-pane-ide-link.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/code-generation-pane-ide-link.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/install-support-for-analog-devices-dsps.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/supportpackageinstaller.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-analog-devices-visualdsp-ide.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-analog-devices-visualdsp-ide.html

 Deployment

• The high-speed and low-speed clock settings help you to configure the baud rates for
peripherals, such as SCI and SPI.

• You can specify the oscillator clock frequency used in the processor to set the system
clock out parameter for the device. Based on the system clock out value, you can get
feedback on the baud rate and the time settings.

• Automatic setting of the prescalers is done based on user-defined baud rate for
peripherals, such as SCI and SPI.

• Based on the settings that you make in the Clocking peripheral, you can see the
timing-related feedback for the peripherals, such as eCAN, I2C, ADC, and Watchdog.

• The parameter relationship is shown at the prompts in some of the peripherals. For
example, in eCAN, at the baud rate parameter, you can see, CAN Module Clock/BRP/
(TSEG1+TSEG2+1)) in bits/sec.

Support for Texas Instruments C2802x and Texas Instruments C2803x
variants

You can now run models on the following variants of TI C2802x and TI C2803x
processors:

10-13

R2013a

• F28030
• F28031
• F28032
• F28033_cpu
• F28034
• F280200
• F28020
• F28021
• F28022
• F28026

You can use the following block libraries with these variants:

• C2802x (c2802xlib)
• C2803x (c2803xlib)

Downloadable support and blocks for Xilinx Zynq-7000 platform

Use the Embedded Coder Support Package for Xilinx Zynq-7000 Platform to
automatically build (makefile-based), download, and run an executable on the Xilinx
Zynq-7000 SoC ZC702 Evaluation Kit. The executable runs in the Linux environment on
the ARM Cortex-A9 processor on the ZC702 Evaluation Kit.

Use blocks from the Embedded Coder Support Package for Xilinx Zynq-7000 Platform
block library:

• The UDP Receive and UDP Send blocks enable communication with networked
devices using an Ethernet port.

• The Linux Task block spawns a task function as separate Linux thread.

To download and install this feature, click Add-Ons > Get Hardware Support
Packages on the MATLAB toolstrip. Then, use Support Package Installer to install the
Embedded Coder Support Package for Xilinx Zynq-7000 Platform. For more information,
see the Working with the Xilinx Zynq-7000 Platform topic.

Support ending for Eclipse IDE in a future release

Support for the Eclipse IDE will end in a future release of the Embedded Coder and
Simulink Coder products.

10-14

http://www.mathworks.com/help/releases/R2013a/ecoder/c2802x-c2802xlib.html
http://www.mathworks.com/help/releases/R2013a/ecoder/c2803x-c2803xlib.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpreceive.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpsend.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/linuxtask.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-xilinx-zynq-7000-platform.html

 Deployment

Support ending for remoteBuild method in a future release

Support for the remoteBuild method will end in a future release of the Embedded Coder
products.

Compatibility Considerations

Use Support Package Installer to install the support package for BeagleBoard hardware,
as described in Install Support for BeagleBoard Hardware. Then, use the Simulink
capability called “Run on Target Hardware” instead of remoteBuild to build and run
models on BeagleBoard hardware.

For more information about using Run on Target Hardware with BeagleBoard, see the
BeagleBoard topic.

10-15

http://www.mathworks.com/help/releases/R2013a/ecoder/ref/remotebuild.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/install-target-for-beagleboard-hardware.html
http://www.mathworks.com/help/releases/R2013a/simulink/beagleboard.html

R2013a

Performance

Optimized function arguments for nonreusable subsystems

For nonreusable subsystems, you can specify the function interface in the generated code
to use arguments. This specification reduces global RAM. It might reduce code size and
improve execution speed, and allow the code generator to apply additional optimizations.

To optimize the function interface for a subsystem, in the Subsystem Block Parameter
dialog box, on the Code Generation tab, set the Function packaging parameter to
Nonreusable function (previously, named Function). The Function packaging
parameter enables the Function interface parameter. Set the Function interface
parameter to Allow arguments.

For more information, see Function interface and Reduce Global Variables in
Nonreusable Subsystem Functions.

Reduced data copies for tunable parameter expressions

Previously, in the generated code, tunable parameter expressions were copied to a
temporary variable. In R2013a, the generated code removes this temporary variable. The
removal of this unnecessary data copy improves execution speed, reduces code size and
global RAM, and allows for additional code optimizations.

For example, for a tunable parameter, b, used in a Constant block, the code was:

/*Constant: '<Root>/Constant'*/

for (i=0; i<9; i++){

 tunable_expr_copy_B.Constant[i] = Param.b[i];

}

/*End of Constant: '<Root>/Constant'*/

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/

MySFun2D_Outputs_wrapper(tunable_expr_copy_B.Constant);

Now, the generated code is:

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/

MySFun2D_Outputs_wrapper(Param.b);

10-16

http://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#btqa3p_-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html

 Performance

Removal of unused global variables

In R2013a, unused global variables generated from a For Each subsystem and bitfields
are removed. This code generation enhancement reduces global RAM.

10-17

R2013a

Verification

Debugging during SIL simulations

If you notice differences between the results of a Normal mode simulation and a SIL
mode simulation, you can select the Configuration Parameters > Verification >
Enable source-level debugging for SIL check box and rerun the SIL simulation.
Then, from the Microsoft Visual Studio IDE, you can insert break points in the generated
source code and step through the code during the SIL simulation. Observing code
behavior in this way can help you to understand the differences in results. For example,
when you are trying to integrate legacy code with generated code and the integration
does not run as expected.

For more information, see Debugging During SIL Simulations.

Simulation of multiple SIL Model blocks in a top model

If you have a top model containing Model blocks, you can simulate the model with
multiple Model blocks in SIL mode. Previously, you could not simulate the top model
with more than one Model block in SIL mode. To verify the different Model blocks, you
had to run multiple simulations. Before each simulation, you had to specify the SIL mode
for one Model block. The removal of this limitation reduces verification time.

If you specify code coverage or code execution profiling, the software does not support this
feature.

API for testing rtiostream communications

To run PIL or External mode simulations with custom hardware, you write your own
rtiostream implementations.

R2013a provides a test suite to debug and prove the behavior of custom rtiostream
interface implementations.

This new API has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

10-18

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/debugging-during-sil-simulations.html

 Verification

• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

This test suite has two parts. One part of the test suite runs on the target.

To launch this part, compile and link the following files, which are in matlabroot/
toolbox/coder/rtiostream/src/rtiostreamtest.

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h

• rtiostream implementation under investigation (e.g., rtiostream_tcpip.c)
• main.c

To run the second part of the test suite, invoke rtiostreamtest. The syntax is as
follows:

function rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have values
'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp': param1,param2 are hostname and port, respectively.
• If connection is 'serial': param1,param2 are COM port and baud rate,

respectively.

For example, you can run the second part of the test suite as follows:

function rtiostreamtest('tcp','localhost','2345')

SIL and PIL support for targets with multicore processors

R2013a allows you to run SIL and PIL simulations of models that are configured for
targets with multicore processors:

• You can run SIL and PIL simulations of single-rate component models in a
concurrent execution model hierarchy, without modifying models or regenerating
code.

10-19

R2013a

• Previously, the configuration parameters, TargetOS and ConcurrentTasks, had to
be the same across a model hierarchy. This restriction has been removed.

Additional code annotation for justifying Polyspace checks

New Polyspace code annotations have been added to justify occurrences of << and +
inside fixed-point multiplication helper functions.

For more information, see Code Annotation for Justifying Polyspace Checks.

Code execution profiling improvements

Comprehensive measurement and reporting of function execution times

R2013a provides comprehensive measurement and reporting of function execution times:

• The software measures execution times for initialization, shared utility and math
library functions.

• The software inserts instrumentation probes around a function call site so that the
measured time includes the time taken to call the function. Previously, the software
inserted instrumentation probes inside the function. As a result, the measured time
represented the execution time for only the function body.

• You can specify the time unit and numeric format for the time measurements in the
code execution profiling report. Previously, the software reported execution times only
in clock ticks. For information about the new default specifications for time unit and
numeric format, see report.

• The code execution profiling report contains hyperlinks to function call sites in the
SIL/PIL test harness. Previously, the report provided hyperlinks to only source code
files generated from the model.

For more information, see Code Execution Profiling.

Viewing and comparing execution time plots with the Simulation Data Inspector

You can use the Simulation Data Inspector to view and compare plots of function
execution times. If you select All measurement and analysis data from the
Configuration Parameters > Code Generation > Verification > Save options
drop-down list, the software automatically imports SIL simulation results into the

10-20

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/code-execution-profiling.html

 Verification

Simulation Data Inspector. This feature allows you to plot execution times and manage
and compare plots from various simulations.

For more information, see Configure Code Execution Profiling and View and Compare
Code Execution Times.

Specification of hardware timer through the Code Replacement Tool

In SIL and PIL simulations, if your hardware target does not have built-in timer support,
you must create a timer object that provides details of the hardware-specific timer and
associated source files. In R2013a, you can specify this hardware-specific timer using
either the graphical user interface of the Code Replacement Tool or the corresponding
command line API. The software stores the timer information as a Code Replacement
Library (CRL) table.

Previously, you could specify the timer using the MATLAB function
coder.profile.Timer. However, support for this function will cease in a future
release.

For more information, see Specify Hardware Timer.

Code-to-model traceability links for reusable subsystems in libraries

Code-to-model traceability links are now available in the generated code for a reusable
library subsystem. Code-to-model traceability links for a reusable library subsystem
appear in the comments of the generated code in the code generation report. The
traceability link is the name of the library.

10-21

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configuring-code-execution-profiling.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/creating-a-connectivity-configuration-for-a-target.html#btsl_3g

R2013a

To include traceability links in the generated code comments, see Traceability in Code
Generation Report.

10-22

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html

 Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

10-23

http://www.mathworks.com/support/bugreports/

R2012b
Version: 6.3

New Features

Bug Fixes

Compatibility Considerations

R2012b

Cyclomatic complexity measurement in static code metrics report

In R2012b, the static code metrics report includes a cyclomatic complexity measurement
for each function. You can view the measurement in the Complexity column of the
Function Information table. For more information, see Analyze Static Code Metrics.

Custom code substitution for MATLAB functions using code replacement
libraries

The coder.replace function provides the ability to replace a specified MATLAB
function with a code replacement library (CRL) function in the generated code. You can
use coder.replace both in MATLAB code from which you want to generate C code
using MATLAB Coder and in MATLAB code in a MATLAB Function block. For more
information, see coder.replace, Replace MATLAB Function with Custom Code, and
Replace MATLAB Function Block Code with Custom Code.

In addition, you can use the code replacement tool to create and register code
replacement tables. These tables provide the basis for replacing default math functions
and operators in your generated code with target-specific code. The ability to control
function and operator replacements potentially allows you to optimize target speed and
memory and better integrate generated code with external and legacy code.

Access the code replacement tool using one of these methods:

• At the MATLAB command line, enter:

crtool

• On the MATLAB Coder Project Settings dialog box Hardware tab, click the
Custom link.

For more information, see Create Code Replacement Table for a Sample MATLAB Coder
Project.

SIL and PIL support for signal logging, encapsulated C++, and AUTOSAR
calibration parameters

Beginning in R2012b, Embedded Coder software supports using Simulink signal logging,
encapsulated C++ code, and AUTOSAR calibration parameters in SIL and PIL mode
simulations.

11-2

http://www.mathworks.com/help/releases/R2012b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.replace.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-with-custom-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-block-code-with-custom-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/manage-crts-with-the-code-replacement-tool.html#btmad5b-1
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/manage-crts-with-the-code-replacement-tool.html#btmad5b-1

 Check bug reports for issues and fixes

Signal logging for SIL and PIL simulations

In R2012b, Simulink signal logging is extended to the SIL and PIL simulation modes.
This allows you to:

• Collect signal logging outputs (e.g., logsout) during SIL and PIL simulations.
• Log the internal signals and the root-level outputs of a SIL or PIL component.
• Manage the SIL and PIL signal logging settings using the Simulink Signal Logging

Selector.
• More easily compare logged signals between normal, SIL, and PIL simulations, for

example, using Simulation Data Inspector.

Signal logging is supported with the following forms of SIL and PIL simulation:

• Top-model SIL or PIL
• Model block (referenced model) SIL or PIL

SIL or PIL signal logging requires the following model configuration settings:

• On the Data Import/Export pane of the Configuration Parameters dialog box, set
Signal logging format to Dataset.

• On the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Interface to C API.

Use SIL and PIL simulations to verify encapsulated C++ code

Previously, you could use SIL and PIL simulations to verify code generated with the
model configuration Language setting C or C++. Beginning with R2012b, you can also
use the Language setting C++ (Encapsulated).

Encapsulated C++ code is supported with the following forms of SIL and PIL simulation:

• SIL or PIL block
• Top-model SIL or PIL
• Model block (referenced model) SIL or PIL

Improved SIL and PIL verification for AUTOSAR-compliant code

The following forms of SIL and PIL simulation support AUTOSAR calibration
parameters in generated code:

• SIL or PIL block

11-3

R2012b

• Top-model SIL or PIL

You can use the calibration parameter custom storage classes CalPrm and
InternalCalPrm to reference data.

AUTOSAR 4.0 nonscalar data support

R2012b extends Embedded Coder support for using nonscalar data in models from
which AUTOSAR 4.0 compatible code is generated. Previously, you could use nonscalar
data associated with port elements, calibration parameters, and per-instance memory.
Beginning in R2012b, you also can use nonscalar inter-runnable variables (IRVs) in
models configured for AUTOSAR.

For information about other AUTOSAR-related enhancements and changes, see
“AUTOSAR software component import and export enhancements” on page 11-8.

Code annotation for justifying Polyspace checks

You can apply Polyspace verification to generated code using the Polyspace Model Link™
SL product. The software detects run-time errors in the generated code. It also helps you
to locate and fix model faults.

Because of the way Embedded Coder implements certain operations, Polyspace might
indicate potential overflows for operators or operations that are actually legitimate.

Previously, you manually justified the associated orange checks in the Polyspace
verification environment.

Now, if you select the new check box, Configuration Parameters > Code Generation
> Comments > Auto generate comments > Operator annotations, the Embedded
Coder software annotates the generated code with comments for Polyspace. When
you run a Polyspace verification, the Polyspace software uses the comments to justify
overflows associated with legitimate operations and assigns the Not a Defect
classification to the corresponding checks.

For more information, see Code Annotation for Justifying Polyspace Checks.

Texas Instruments Code Composer Studio IDE 5.1 support

This release adds support for version 5.1 of the Texas Instruments Code Composer
Studio IDE (CCS) to existing support for CCS versions 3.3 and 4.1.

11-4

http://www.mathworks.com/help/releases/R2012b/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html

 Check bug reports for issues and fixes

Support for CCS version 5.1 includes the following capabilities:

• Automatic creation of makefile projects
• Support for DSP/BIOS™ version 5.41.xx
• Support for C6000 Compiler version 7.3.x

For more information, see Working with Texas Instruments Code Composer Studio IDE.

External mode support for ERT targets with static main

Previously, Embedded Coder software supported External mode for ERT targets only if
the associated main program was automatically generated by the model build process.
Beginning in R2012b, the software also supports External mode for ERT targets with
a static main program. Specifically, the static main file matlabroot/rtw/c/src/
common/rt_main.c has been enhanced to support External mode.

If you have authored a custom ERT-based target, you can support External mode
with your custom main program by updating your main program, using the code in
rt_main.c as an example.

Downloadable support for Green Hills MULTI

If you have an Embedded Coder license, you can install support for Green Hills MULTI
IDE (MULTI) as described in Install Support for Green Hills MULTI IDE. Support for
MULTI includes the same capabilities that were previously available.

After installing support for MULTI, you can use the “Target for Use with Green Hills
MULTI IDE” block library, located in the Simulink Library Browser. You can open this
block library by entering idelinklib_ghsmulti in the MATLAB Command Window.

The block library contains blocks for:

• Analog Devices Blackfin processors

• Memory Allocate
• Memory Copy
• Blackfin Hardware Interrupt
• Idle Task

• Freescale MPC55xx and MPC74xx processors

11-5

http://www.mathworks.com/help/releases/R2012b/ecoder/working-with-texas-instruments-code-composer-studio-ide.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/install-support-for-green-hills-multi-ide.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/blackfinhardwareinterrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html

R2012b

• Memory Allocate
• Memory Copy
• Idle Task
• MPC5500 Interrupt
• MPC7400 Hardware Interrupt

Compatibility Considerations

Previously, Embedded Coder software included support for MULTI. Now, use Target
Installer to install support before using Embedded Coder with MULTI.

Support for Texas Instruments C2806x processors

This release adds support for Texas Instruments C2806x processors to Embedded Coder.

This support adds the C2806x (c2806xlib) block library to the Simulink Library Browser.
The C2806x block library includes the following blocks:

• C2802x/C2803x/C2806x ADC
• C2802x/C2803x/C2806x AnalogIO Input
• C2802x/C2803x/C2806x AnalogIO Output
• C28x CAN Calibration Protocol
• C2802x/C2803x/C2806x COMP
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Input
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Output
• C28x I2C Receive
• C28x I2C Transmit
• C28x SCI Receive
• C28x SCI Transmit
• C28x SPI Receive
• C28x SPI Transmit
• C28x Software Interrupt Trigger
• C28x Watchdog
• C28x eCAN Receive

11-6

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc5500interrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc7400hardwareinterrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xadc.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogioinput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogiooutput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xcancalibrationprotocol.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xcomp.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitalinput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitaloutput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2creceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2ctransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscireceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscitransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspireceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspitransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xsoftwareinterrupttrigger.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xwatchdog.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecanreceive.html

 Check bug reports for issues and fixes

• C28x eCAN Transmit
• C28x eCAP
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
• C28x eQEP

For more information, see C2806x (c2806xlib).

Performance enhancement of Simulink data objects

In R2012b, Simulink can create and load subclasses of Simulink data classes more
efficiently. To take advantage of this enhancement, use the setupCoderInfo method
to configure the CoderInfo object of your class. The setupCoderInfo method is called
once during object construction.

Consider the example of the ECoderDemos.Parameter class. Previously, this class
was defined as follows. Notice how the CoderInfo object is configured in the class
constructor.
classdef Parameter < Simulink.Parameter

% ECoderDemos.Parameter Class definition.

 methods

 function h = Parameter(optionalValue)

 % Use custom storage classes from this package

 useLocalCustomStorageClasses(h, 'ECoderDemos');

 % Set up object to use custom storage classes by default

 h.CoderInfo.StorageClass = 'Custom';

 % Initialize Value property

 switch nargin

 case 0,

 % No action

 case 1,

 h.Value = optionalValue;

 end

 end

 end % methods

end % classdef

In this release, the ECoderDemos.Parameter class is defined as follows. Notice the
use of the setupCoderInfo method to configure the CoderInfo object. The rest of the
constructor method is unchanged.

Note: You can access this class definition at matlabroot/toolbox/rtw/targets/
ecoder/ecoderdemos/dataclasses-/+ECoderDemos/@Parameter/Parameter.m.

11-7

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecantransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecap.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xepwm.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xeqep.html
http://www.mathworks.com/help/releases/R2012b/ecoder/c2806x-c2806xlib.html

R2012b

classdef Parameter < Simulink.Parameter

% ECoderDemos.Parameter Class definition

 methods

 function setupCoderInfo(h)

 % Use custom storage classes from this package

 useLocalCustomStorageClasses(h, 'ECoderDemos');

 % Set up object to use custom storage classes by default

 h.CoderInfo.StorageClass = 'Custom';

 end

 function h = Parameter(optionalValue)

 % Initialize Value property

 switch nargin

 case 0,

 % No action

 case 1,

 h.Value = optionalValue;

 end

 end

 end % methods

end % classdef

AUTOSAR software component import and export enhancements

R2012b adds AUTOSAR workflow improvements, including import validation and faster
import and export of arxml files. See also “AUTOSAR 4.0 nonscalar data support” on
page 11-4.

Import validation

Beginning in R2012b, the AUTOSAR software component importer validates the XML in
the imported arxml files. If XML validation fails for a file, the importer displays errors.
For example:
Error

The IsService attribute is undefined for interface /mtest_pkg/mtest_if/In1

in file hArxmlFileErrorMissingIsService_SR_3p2.arxml:48.

Specify the IsService attribute to be either true or false

In this example message, the file name is a hyperlink, and you can click the hyperlink to
see the location of the error in the arxml file.

Faster import and export of arxml files

Beginning in R2012b, Embedded Coder software provides up to 20 times faster import
and export of AUTOSAR software component descriptions.

11-8

 Check bug reports for issues and fixes

Explicit access mode for AUTOSAR Sender and Receiver ports

Previously, the AUTOSAR software component importer did not support explicit data
access modes for AUTOSAR component Sender and Receiver ports. It issued a warning
for an explicit data access mode and set the port data access mode to implicit. Beginning
in R2012b, the importer analyzes the AUTOSAR software component to determine
whether the data access mode for a port is implicit or explicit. The importer honors an
explicit access mode setting. However, if conflicting data access modes are detected, the
importer issues a warning and sets the data access mode to implicit.

Import port-based calibration parameters

The AUTOSAR software component importer has been enhanced to import any port-
based calibration parameters referenced in the AUTOSAR software component. For each
imported parameter, the importer creates a data object in the MATLAB base workspace.

Highlight virtual blocks in model Web view of code generation report

In the model Web view of the code generation report, when tracing between the model
and the code, if you click a virtual block and no code is highlighted in the generated code
pane, the virtual block is highlighted yellow.

Code Execution Profiling Improvements

Updated Code Execution Profiling API

The existing code execution profiling APIs, rtw.pil.ExecutionProfile and
rtw.pil.ExecutionProfileSection, have been replaced with coder.profile.ExecutionTime
and coder.profile.ExecutionTimeSection respectively.

Compatibility Considerations

The old class names and methods forward to the corresponding new class names and
methods. A warning is not issued. The old method names are hidden and no longer
documented.
New Properties and Methods

The following new methods and properties have been added:

Interface Method or Property

coder.profile.Timer coder.profile.Timer

11-9

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html

R2012b

Interface Method or Property

display
Sections
TimerTicksPerSecond

coder.profile.ExecutionTime

report
coder.profile.ExecutionTimeSection ExecutionTimeInTicks
 MaximumExecutionTimeCallNum
 MaximumExecutionTimeInTicks
 MaximumSelfTimeCallNum
 MaximumSelfTimeInTicks
 Name
 Number
 NumCalls
 SampleOffset
 SamplePeriod
 SelfTimeInTicks
 TotalExecutionTimeInTicks
 TotalSelfTimeInTicks

Functionality Being Removed or Changed

The following functionality is being removed or changed:

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.connectivity.Timer Call is forwarded to
coder.profile.Timer
without warning
message.

coder.profile.Timer All methods
are the same as
rtw.connectivity.Timer.

rtw.pil.ExecutionProfile-.displayCall is forwarded to
coder.profile.Execution-
Time.display without
warning message.

display None

11-10

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimecallnum.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimecallnum.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/selftimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html

 Check bug reports for issues and fixes

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile-.reportCall is forwarded to
coder.profile.Execution-
Time.report without
warning message.

report None

rtw.pil.ExecutionProfile-.getSectionProfile

rtw.pil.ExecutionProfile-.getNumSectionProfiles

Call is forwarded to
coder.profile.Execution-
Time.Sections without
warning message.

Sections Uses property syntax

rtw.pil.ExecutionProfile-.getTimerTicksPerSecond

rtw.pil.ExecutionProfile-.setTimerTicksPerSecond

Calls are forwarded
to property
coder.profile.Execution-
Time.TimerTicksPerSecond
without warning
message.

TimerTicksPerSecond Uses property syntax

rtw.pil.ExecutionProfile-
Section.getMaxTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.Maximum-
ExecutionTimeInTicks
without warning
message.

MaximumExecution-
TimeInTicks

Uses property syntax

rtw.pil.ExecutionProfile-
Section.getName

Call is forwarded to
coder.profile.Execution-
TimeSection.Name
without warning
message.

Name Uses property syntax

rtw.pil.ExecutionProfile-
Section.getNumCalls

Call is forwarded to
coder.profile.Execution-
TimeSection.NumCalls
without warning
message.

NumCalls Uses property syntax

rtw.pil.ExecutionProfile-.getSectionNumberCall is forwarded to
coder.profile.Execution-
Time.Number without
warning message.

Number Uses property syntax

11-11

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html

R2012b

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile-
Section.getTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.Execution-
TimeInTicks without
warning message.

ExecutionTimeInTicks Uses property syntax

rtw.pil.ExecutionProfile-.getTimesCall is forwarded to the
legacy getTimes function
without warning
message.

Calculate execution
time in seconds
by the formula
ExecutionTimeInSecs =
ExecutionTimeInTicks /
TimerTicksPerSecond.

No equivalent to
getTimes in new
interface.

rtw.pil.ExecutionProfile-
Section.getTotalTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.TotalExecution-
TimeInTicks without
warning message.

TotalExecution-
TimeInTicks

Uses property syntax

rtw.pil.ExecutionProfile-
Section.getSampleOffset

Call is forwarded to
coder.profile.Execution-
TimeSection.SampleOffset
without warning
message.

SampleOffset Uses property syntax

rtw.pil.ExecutionProfile-
Section.getSamplePeriod

Call is forwarded to
coder.profile.Execution-
TimeSection.SamplePeriod
without warning
message.

SamplePeriod Uses property syntax

rtw.pil.ExecutionProfile-
Section.getTotalSelfTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.TotalSelf-
TimeInTicks without
warning message.

TotalSelfTimeInTicks Uses property syntax

Code Execution Profiling Supports Single Object Output

Code execution profiling during a SIL or PIL simulation honors the Save simulation
output as a single object setting.

11-12

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html

 Check bug reports for issues and fixes

If the Measure task execution time check box is selected in the Verification pane
and the Save simulation output as a single object check box is selected in the Data
Import/Export pane, then the Workspace variable defined in the Verification pane
is saved in the single output object instead of in the base workspace.

Incremental Compilation with Changes in Code Coverage Settings

If only code coverage settings have changed and the generated code is otherwise up to
date, code is not regenerated. Instead, the existing up-to-date code is recompiled using
the new code coverage settings.

11-13

R2012b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

11-14

http://www.mathworks.com/support/bugreports/

R2012a
Version: 6.2

New Features

Bug Fixes

Compatibility Considerations

R2012a

AUTOSAR Enhancements

AUTOSAR Release 4.0

R2012a supports AUTOSAR Release 4.0 (version 4.0.2), which includes:

• Import and export of AUTOSAR R4.0 XML files
• Generation of AUTOSAR R4.0 code
• Support for application and implementation data types and base types. For more

information, see Data Type Support for Release 4.0.
• Code replacement library (CRL) support for over 300 routines from the following

AUTOSAR libraries:

• Floating-Point Math (AUTOSAR_SWS_MFLLibrary)
• Fixed-Point Math (AUTOSAR_SWS_MFXLibrary)

Support for Schema 2.0 Removed

Support for AUTOSAR schema version 2.0 has been removed from R2012a. The software
now supports the following schema versions:

• 4.0 (4.0.2)
• 3.2 (3.2.1)
• 3.1 (3.1.4) — Default
• 3.0 (3.0.2)
• 2.1 (XSD rev 0017)

Code Efficiency Enhancements

For Each Subsystem Loop Bound Passed by Value

The generated code of the For Each subsystem includes a loop bound that was previously
passed by a pointer. In R2012a, the loop bound is passed by value which improves
memory usage and execution speed.

For example, if you have a For Each subsystem with a Function name,
myFcnVectorized, the generated code for the function prototype is:

void myFcnVectorized(int32_T NumIters, …) {

 for (ForEach_itr = 0;

12-2

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#btc1dbl
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1

 Check bug reports for issues and fixes

 ForEach_itr < NumIters;

 ForEach_itr++) { ...

The argument NumIters is passed by value, instead of by pointer. The function is called
as follows:

myFcnVectorized(3, ...

For more information, see For Each Subsystem in the Simulink documentation.

Fully Inlined S-functions from Legacy Code Tool

The Legacy Code Tool now automatically generates fully inlined S-functions for
legacy code. Previously, the generated code included an unnecessary data copy for the
function-call input. In R2012a, these temporary variables are no longer generated. This
enhancement reduces memory usage and improves execution speed, as well as enabling
other optimizations and a consistent coding style.

For example, temporary variables, tmp and tmp_0, were used for the generated function-
call input:
int32_T i;

real_T tmp[6];

real_T tmp_0[6];

for (i = 0; i < 6; i++) {

/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1,tmp,tmp_0,1,2,3);

Now, the generated code is:
int32_T i;

/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1, rtwdemo_lct_ndarray_ConstP.Constant_Value,

 rtwdemo_lct_ndarray_ConstP.Constant1_Value, 1, 2, 3);

For more information, see Integrate External Code Using Legacy Code Tool.

Element-Wise Operations as Inputs to Intrinsic Functions

In previous releases, element-wise operations were performed in temporary variables
before being used as inputs in an intrinsic function call. In R2012a, element-wise
operations are performed within the intrinsic function call to improve memory usage and
execution speed.

For example, in previous releases when you generated code for the following MATLAB
code:

function y = matrixExpand(u1, u2)

12-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/foreachsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bq4fyia.html

R2012a

eml.varsize('u1', [4, 8, 10]);

eml.varsize('u2', [4, 8, 10]);

y = isnan(u1 + u2);

element-wise operations were stored in a temporary variable, x_data, which became the
input to the generated intrinsic function, muDoubleScalarIsNan:

for (i = 0; i <= loop_ub; i++) {

 x_data[i] = u1_data[i] + u2_data[i];

}

...

for (i = 0; i <= loop_ub; i++) {

 y_data[i] = muDoubleScalarIsNaN(x_data[i]);

}

In R2012a, the temporary variable is eliminated in the generated code and the element-
wise operations occur in the function call input:

for (i = 0; i <= loop_ub; i++) {

 y_data[i] = muDoubleScalarIsNaN(u1_data[i] + u2_data[i]);

}

Enhancements to Custom Storage Classes in Simulink and mpt Packages

In this release, enhancements have been made to the following custom storage classes
(CSCs) in the Simulink package.

• Owner property added to Const, Volatile, ConstVolatile, ExportToFile
• Definition file property added to Const, Volatile, ConstVolatile,

ExportToFile

• Header file property added to Const, Volatile, ConstVolatile, Define

The following enhancements have been made to CSCs in the mpt package

• Owner property has been added to ExportToFile
• Settings for the Owner and Definition file properties for Global, Custom,

Volatile, and ConstVolatile CSCs have been moved from the Other Attributes
tab to the General tab of the Custom Storage Class Designer.

Code Generation Report Includes Simulink Web View

R2012a supports integration of the Simulink Web view into the code generation report.
You can view the generated code and model in a single web browser window without
MATLAB and Simulink installed on your computer.

12-4

 Check bug reports for issues and fixes

To generate a code generation report with the model Web view, on the Code Generation
> Report pane of the model configuration parameters, select:

• Create code generation report
• Generate model Web view
• Open report automatically (optional)

For navigation between the generated code and the model in the Web view, select

• Code-to-model
• Model-to-code

For more information, see Include Model Web View in HTML Code Generation Report.
The model Web view requires a Simulink Report Generator license.

LDRA Testbed Code Coverage Annotations in Code Generation Report

If you specify the LDRA Testbed code coverage tool for a SIL/PIL simulation, the code
generation report provides summary data and code annotations with LDRA Testbed
coverage information. Each code annotation is associated with a code feature and
indicates the nature of the feature coverage during code execution. See Code Coverage
Summary and Annotations in Code Generation Report.

You should not use the code generation report alone to check that your coverage goals
have been achieved. You must refer to the LDRA Testbed Report. See View Code
Coverage Information at the End of SIL or PIL Simulations.

Generated Identifiers Enhancements

Simplified Identifiers for Model Reference Code

Previously, model reference identifiers were generated with the mr_ prefix. In R2012a,
code generation no longer includes the mr_ prefix to identifiers. This naming convention
is now consistent with the code generation of subsystem identifiers and other identifiers.
For more information, see Configuring Generated Identifiers.

Consistent Identifiers for Comparing Generated Code

To generate unique identifiers in the generated code, the code generation process inserts
a mangling string in an identifier name. Previously, the mangling string was generated
using the full block path name, which included the model name. In R2012a, the mangling

12-5

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btcg4p4.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bslvigk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bslvigk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#f1147684

R2012a

string uses the Simulink Identifier (SID), which is unique within the model. This
mangling string allows for consistent identifiers for similar or derived models, because
the SID is persistent even if you change the name of the model. If you create another
model using Save As, the SID is preserved for each block. For blocks in a subsystem,
the SID is preserved whether you build the subsystem or build the model containing the
subsystem.

For example, you might want to make a structural change to a model and then see the
impact of the change on the generated code. You can save your model using Save As
and make a change to the saved model. To see only the change in the generated code
due to the change in the model, you can compare the generated code from the original
and derived model. Before R2012a, the identifiers from the derived model were different,
because the mangling string included the different model names. It was difficult to see
only the difference in the generated code from the change in the model. Now, when you
compare the generated code for the two models, the difference is just the code resulting
from the change in the derived model.

If you have an Embedded Coder license, see Configure Generated Identifiers in
Embedded System Code for more information on customizing generated identifiers.

Code Replacement Enhancements

R2012a provides the following enhancements to code replacement library support.

Target Function Libraries Renamed to Code Replacement Libraries

In R2012a, target function libraries (TFLs) are renamed to code replacement libraries
(CRLs). The change is reflected in software, demos, and documentation. The changes
include the following:

• The model configuration parameter Target function library
(TargetFunctionLibrary) is renamed to Code replacement
library (CodeReplacementLibrary). The command line parameter
TargetFunctionLibrary is still supported, but when you save a model, the library
value is saved using the parameter CodeReplacementLibrary.

• The code replacement demo rtwdemo_tfl_script is renamed to
rtwdemo_crl_script, and the rtwdemo_tfl* models associated with the demo
are renamed to rtwdemo_crl*. For example, the model rtwdemo_tfladdsub is
renamed to rtwdemo_crladdsub.

• The code replacement demo coderdemo_tfl is renamed to coderdemo_crl.

12-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bso67hf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1

 Check bug reports for issues and fixes

• The Target Function Library (TFL) Viewer is renamed to Code Replacement Viewer.

Code replacement related items that have not been renamed include code replacement
classes, functions, and commands. Examples include the RTW.TflCOperationEntry
class, the setTflCFunctionEntryParameters function, and the RTW.viewTfl command.

Enhanced Code Replacement Traceability

R2012a provides enhanced code replacement traceability, using the model option
Summarize which blocks triggered code replacements, which is located on the Code
Generation > Report pane of the Configuration Parameters dialog box. When you
select Summarize which blocks triggered code replacements:

• Code generation includes a code replacement report in the HTML code generation
report for your model.

• Code replacement trace information is generated for viewing in the Trace
Information tab of the Code Replacement Viewer.

The code replacement report lists replacement functions and their associated blocks. You
can use the report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the Simulink block that triggered the

replacement.

For more information, see Analyze Code Replacements in the Generated Code

The Trace Information tab of the Code Replacement Viewer lists Hit Source
Locations and Miss Source Locations. The Viewer provides links to each source
location (the source block for which code replacement was considered) and, for
misses, lists a Miss Reason. For example, if a rounding mode setting did not match
between a CRL entry and a block, the Viewer displays a reason similar to the
following: “Mismatched rounding mode: actual 'RTW_ROUND_SIMPLEST', expected
'RTW_ROUND_CEILING'.” After generating code for your model, you can open the Code
Replacement Viewer for viewing hits and misses using the following commands:
>> crl=get_param('model','TargetFcnLibHandle')

>> RTW.viewTfl(crl)

When debugging a CRL entry, you can use code replacement report information together
with hits and misses information in the Code Replacement Viewer to determine why a
replacement function was not used in the generated code.

12-7

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/settflcfunctionentryparameters.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/brh9ygl-1.html#btaoq9q-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btd9an8-1.html

R2012a

For more information, see Trace Code Replacements Generated Using Your Code
Replacement Library and Determine Why Code Replacement Functions Were Not Used.

Code Replacement Support for Simulink Matrix Division and Inversion Operators

Embedded Coder software now provides Simulink code replacement support for the
following nonscalar division and inversion operators:

Operator Key

Matrix right division (/) RTW_OP_RDIV

Matrix left division (\) RTW_OP_LDIV

Matrix inversion (inv) RTW_OP_INV

For more information, see Map Nonscalar Operators to Target-Specific Implementations.

Code Replacement Support for MATLAB Coder fix, hypot, round, and sign Functions

Embedded Coder software now provides MATLAB Coder code replacement support for
fix, hypot, round, and sign functions.

Integer Functions Now Return Real-World Values

The following functions now return real-world values instead of stored integer values:
int8, int16, int32, int64, uint8, uint16, uint32, and uint64.

Compatibility Considerations

In code generation with MATLAB Coder or Simulink Coder, if you used a CRL to replace
a cast in your replacement function, silent incorrect numerical results may occur. The
numerical results will not change if the input fi object has binary-point scaling and zero
fractional length. To optimize code generation, these integer functions now use floor
rounding, instead of nearest rounding, when the input fraction length equals 0. You
should reevaluate your integer cast replacement functions and update their replacement
tables.

SIL and PIL Enhancements

R2012a supports the following enhancements for software-in-the loop (SIL) and
processor-in-the-loop (PIL) simulations.

12-8

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jow-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int16.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int32.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int64.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint16.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint32.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint64.html

 Check bug reports for issues and fixes

SIL and PIL Test Harness Files in Code Generation Report

For top-model and Model block SIL and PIL simulations, the software now displays test
harness files and the corresponding static code metrics in the code generation report.

This feature helps you to:

• Understand and review the SIL and PIL verification process.
• See how your registered custom target connectivity files fit into the target application

that runs during a SIL or PIL simulation.

This feature is not available for simulations that you run with the PIL block. For more
information, see View Test Harness Files in Code Generation Report.

12-9

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btc09hd.html

R2012a

PIL Support for Code Coverage with LDRA Testbed

The target connectivity API supports code coverage with LDRA Testbed for the following
types of PIL simulation:

• Top-Model PIL
• Model block PIL

Previously, support for code coverage during a PIL simulation was only available in
special cases, where your PIL application could write directly to the host file system.

You can run PIL simulations on simulator or target hardware and collect code coverage
metrics to support high integrity workflows, for example, DO-178B and ISO 26262. For
more information, see Use a Code Coverage Tool in SIL and PIL Simulations.

Seamless Switching Between SIL and PIL for Top-Model and Model Block

If you select Configuration Parameters > SIL and PIL Verification > Enable
portable word sizes, you can switch between the SIL and PIL simulation modes
without:

• Changing configuration parameters of your model
• Regenerating code (if your model is up-to-date)

This feature:

• Applies only to top-model and Model block SIL/PIL
• Requires that the code can be compiled by both the host computer and the target

platform

If your target uses code that cannot be compiled on the host, then you see compilation
errors when you try to simulate the model in SIL mode. You might be able to work
around this problem by adding the source code files to the SkipForSil group in the
build information object RTW.BuildInfo. The SIL build on the host platform does not
compile source files present in the SkipForSil group. See Code that the Host Cannot
Compile.

Enhanced Hardware Implementation Support

Host and Target Floating Point Data Type Sizes

The host and target floating point data type sizes must be the same. Previously, a
mismatch would produce undefined behaviour resulting in a simulation failure. Now, the

12-10

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#btaed67
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#btaed67

 Check bug reports for issues and fixes

software generates an error with a clear message when the host and target data types
are not:

• 32 bits for single
• 64 bits for double

For more information, seeHardware Implementation Support.

Word-Addressable Targets

Previously, the target connectivity API did not support word-addressable targets for PIL
simulations or SIL simulations with PortableWordSizes enabled. This limitation has
been removed.

In addition, data type sizes that are smaller than the target word sizes are now
supported. See Hardware Implementation Support.

The software uses the MATLAB host byte order when sending words through the
rtIOStream API. For information about host byte ordering, see computer in the
MATLAB Reference documentation.

Top-Model Output Limitations Removed

Previously, in a top-model SIL/PIL simulation, not all signal and output logging fields
matched the fields produced by a Normal simulation. For example:

• With signal logging, the software would add the suffix _wrapper to the block path for
signals in logsout.

• With output logging, if the save format was Structure or Structure with time,
the software would add the suffix _wrapper to the block name for signals in yout.

These limitations are not present in R2012a, except if you do one of the following:

• Specify the signal logging format to be ModelDataLogs. In this case, yout will still
contain references to the wrapper model. You should use the Dataset signal logging
format. See Simulink.SimulationData.Dataset in the Simulink reference
documentation.

• Run command line simulations using the sim command but without specifying the
single-output format. See Using the sim Command in the Simulink documentation.

12-11

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/computer.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.dataset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-61836.html

R2012a

Model Block SIL/PIL Support for Absolute Time

Previously, you could not run a Model block in the SIL or PIL mode if the Model block
contained Simulink blocks that depended on absolute time. Now, Model block SIL/PIL
supports absolute time except for the following case: the Model block contains Simulink
blocks that require absolute time and the Model block is conditionally executed. See
Configuration Parameters Support.

Changes for ERT and ERT-Based Targets

In R2012a, the simplified model call interface used by ERT targets has been further
streamlined. (The simplified call interface also is now available to GRT target users —
see Simplified Call Interface for Generated Code in the R2012a Simulink Coder Release
Notes.) With the call interface enhancements come some compatibility considerations for
static ERT main program (ert_main.c) files created before R2012a.

Compatibility Considerations

ERT Main Programs Now Include rtmodel.h Instead of autobuild.h

• In previous releases, GRT-based main programs such as grt_main.c and
grt_malloc_main.c included rtmodel.h (which includes model.h) to access
model-specific data structures and entry points. However, the static ERT main
program ert_main.c included a different file, autobuild.h.

• Beginning in R2012a, GRT and static ERT main programs include rtmodel.h. If you
have a static ERT main program created before R2012a that you want to use with
R2012a generated code, update the main program to include rtmodel.h instead of
autobuild.h.

tid Argument to Model Step or Model Output/Update Function No Longer
Generated As part of streamlining the model call interface, code generation no longer
generates the tid argument to model_step or model_output/model_update functions
in multirate, single-tasking models. If you have a static ERT main program created
before R2012a that you want to use with R2012a generated code, update the main
program to remove the tid argument in model function calls.

firstTime Argument to Model Initialize Function No Longer Generated As
part of streamlining the model call interface, code generation no longer generates the
firstTime argument to the model_initialize function. If you have a static ERT main
program created before R2012a that you want to use with R2012a generated code, update

12-12

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/rn/bs8t7oo-1.html#btbqw7s
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/_step.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/model_initialize.html

 Check bug reports for issues and fixes

the main program to remove the firstTime argument in model_initialize function
calls.

Note: The target configuration parameter ERTFirstTimeCompliant and the model
configuration parameter IncludeERTFirstTime will be removed from the Embedded
Coder software in a future release.

MAT-file Logging and External Mode Calls Moved from Model Code to Main
Program As part of streamlining the model call interface, some MAT-file logging and
External mode calls have been moved from the generated model code in model.c or
.cpp to the main program code in ert_main.c. MAT-file logging and External mode
calls are not heavily used in production code environments. However, if you have a static
ERT main program created before R2012a that you want to use with R2012a generated
code, and if you do want to support MAT-file logging or External mode, update the main
program to add the MAT-file logging and External mode calls.

Changes for Embedded IDEs and Embedded Targets

• “Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE” on
page 12-13

• “Support Added for Using Processor-in-the-Loop (PIL) with Serial Communication
Interface (SCI) for TI C2000 Processors” on page 12-13

• “Support Removed for Freescale MPC5xx” on page 12-14
• “Limitation: Parallel Builds Not Supported for Embedded Targets” on page 12-14

Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE

Embedded Coder software now supports version 4.4 of GCC on host computers running
Linux with Eclipse IDE. This support is on both 32-bit and 64-bit host Linux platforms.

If you were using an earlier version of GCC on Linux with Eclipse, upgrade to GCC 4.4.

Support Added for Using Processor-in-the-Loop (PIL) with Serial Communication Interface (SCI)
for TI C2000 Processors

You can now perform PIL simulation over a SCI interface with Texas Instruments
C280x, C2802x, C2803x, C28x3x, c2834x processors. Previously, this capability was
supported only for TI C28035 and C28335 processors.

12-13

R2012a

Support Removed for Freescale MPC5xx

This release removes support for the Freescale MPC5xx processor family from the
Embedded Coder product.

Attempting to generate code from models that contain blocks for Freescale MPC5xx
hardware produces an error message.

Limitation: Parallel Builds Not Supported for Embedded Targets

The Simulink Coder product provides an API for MATLAB Distributed Computing
Server™ and Parallel Computing Toolbox™ products. The API allows these products to
perform parallel builds that reduce build time for referenced models. However, the API
does not support parallel builds for models whose System target file parameter is set to
idelink_ert.tlc or idelink_grt.tlc. Thus, you cannot perform parallel builds for
Embedded Targets.

New and Enhanced Demos

The following demos have been added in R2012a:

Demo... Shows How You Can...

rtwdemo_roll_axis Generate code for a roll axis autopilot control system.
The rtwdemo_roll model represents a basic roll
axis autopilot with two operating modes: roll attitude
hold and heading hold. rtwdemo_roll replaces
rtwdemo_f14.

c28335_pmsmfoc_script Schedule a multi-rate controller for a permanent
magnet synchronous machine (PMSM) motor control
application that runs on a Texas Instruments F28335
processor. To get this demo, use targetinstaller
or supportPackageInstaller to install the
Embedded Coder Support Package for Texas
Instruments C2000 Processors.

The following demos have been enhanced in R2012a:

Demo... Now...

coderdemo_crl Reflects the renaming of target function libraries
(TFLs) to code replacement libraries (CRLs).

12-14

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bssm_lo-1

 Check bug reports for issues and fixes

Demo... Now...

rtwdemo_crl_script • Reflects the renaming of target function libraries
(TFLs) to code replacement libraries (CRLs).

• Illustrates code replacement for Simulink matrix
division and inversion operators.

rtwdemo_pmsmfoc_script Added torque and position control modes to
controller, parameterized motor and sensor data, and
added support for specifying baud rate in example
PIL implementation.

rtwdemo_radar Shows how to simulate and generate code for the
model rtwdemo_eml_aero_radar, which contains a
MATLAB script.

rtwdemo_configuration_set Shows how to use the Code Generation Advisor and
to automate the process of configuring a model for
simulation and code generation.

12-15

R2012a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

12-16

http://www.mathworks.com/support/bugreports/

R2011b
Version: 6.1

New Features

Bug Fixes

Compatibility Considerations

R2011b

Static Code Metrics in Code Generation Report

The HTML code generation report now includes a static code metrics report. The static
code metrics include: number of source code files, number of lines of code, list of global
variables, functions in a call tree format, and the estimated stack size required for a
function.

To generate the static code metrics report, on the Code Generation > Report pane of
the Configuration Parameters dialog box, select the Static code metrics parameter
and build your model. For more information, see Analyze Static Code Metrics of the
Generated Code.

AUTOSAR Enhancements

Import and Export of AUTOSAR Sensor/Actuator Components

Embedded Coder now supports Sensor/Actuator Software Components. The key
difference between a sensor/actuator component and an application component is that a
sensor/actuator component can access the I/O hardware abstraction part within the ECU
abstraction layer.

This support allows you to import sensor/actuator components, implement and test
designs within Simulink, and export sensor/actuator components. For more information,
see Use the Configure AUTOSAR Interface Dialog Box.

Improved Simulink Library Support for Multiple Runnables

Previously, Embedded Coder did not support the creation of multiple runnables from
subsystems with links to Simulink library blocks. For example, you had to disable
and break links to library blocks in order to configure and validate the subsystems as
AUTOSAR runnables.

Now, the software supports the creation of multiple runnables when:

• The wrapper subsystem (containing function-call subsystems) is a link to a library
block

• The function-call subsystems (within the wrapper subsystem) are links to library
blocks

For more information, see Configure Multiple Runnables in the Embedded Coder
documentation.

13-2

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bs43n80.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bs43n80.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1

 Check bug reports for issues and fixes

AUTOSAR Schema Version 3.2

The software now supports AUTOSAR schema version 3.2 (3.2.1). See Select an
AUTOSAR Schema.

Export AUTOSAR XML as Single File

When you export an AUTOSAR Software Component, you can generate XML as either
a set of files (default) or a single file. The latter option is new. For more information, see
Use the Configure AUTOSAR Interface Dialog Box.

SIL and PIL Enhancements

R2011b supports the following enhancements for software-in-the loop (SIL) and
processor-in-the-loop (PIL) simulations.

Code Execution Profiling of Functions in Subsystems and Model Blocks

Previously, you could generate a profile of code execution times only for tasks within
your generated code (for example, the step function for a sample rate). Now, you can
also produce a profile of code execution times for functions generated from atomic
subsystems and model reference hierarchies within the top model. The software places
instrumentation probes inside these functions and calculates execution times during a
SIL or PIL simulation. At the end of the simulation, you can view an HTML report and
analyze execution times within the MATLAB environment:

• The HTML report provides a summary of maximum and average execution times,
which allows you to identify code that requires optimization

• The supplied APIs allow you to carry out further analysis of time measurements.

For more information, see Code Execution Profiling in the Embedded Coder
documentation.

Code Coverage with LDRA Testbed

You can measure code coverage using the LDRA Testbed from LDRA Software
Technology. For more information, see Code Coverage.

BitField and GetSet Custom Storage Classes

The software previously did not support the BitField and GetSet custom storage
classes. Now, the software supports these custom storage classes for all types of SIL and

13-3

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsvxesb.html

R2011b

PIL simulations, with one limitation. GetSet behavior for the SIL block is different from
top-model SIL/PIL, Model block SIL/PIL, and PIL block:

• SIL block — The C definitions of the Get and Set functions that you provide form
part of the algorithm under test.

• Other types of SIL/PIL — The SIL/PIL test harness automatically provides C
definitions of the Get and Set functions that are used during SIL/PIL simulations. In
addition, the software supports only scalar signals, parameters and global data stores.

For more information, see I/O Support and GetSet Custom Storage Class.

Model Blocks with Variable-Size Signals

You can run Model block SIL and PIL simulations where the Model block contains
variable-size signals. On the Simulation > Configuration Parameters > Model
Referencing pane, in the Propagate sizes of variable-size signals field, you must
specify During execution. See I/O Support.

Verification of Generated C++ Code

Previously, support for C++ was restricted to simulations with the SIL block. Now, you
can verify generated C++ code using all types of SIL and PIL:

• Top-model
• Model block
• SIL or PIL block

As before, only the SIL block supports C++ encapsulation. See Configuration Parameters
Support.

Generate Multitasking Code for Concurrent Execution on Multicore
Processors

The Embedded Coder product extends the concurrent execution modeling capability of
the Simulink product. With Embedded Coder, you can generate multitasking code that
uses POSIX threads (Pthreads) for concurrent execution on multicore processors running
Linux or VxWorks.

See Configuring Models for Targets with Multicore Processors.

13-4

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#bruv2ph-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html

 Check bug reports for issues and fixes

Changes for Embedded IDEs and Embedded Targets

• “64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++ and Texas
Instruments Code Composer Studio 3.3 and 4.0” on page 13-5

• “Support Added for Wind River VxWorks 6.8” on page 13-6
• “Support Added for Serial Communications Interface with Processor-in-the-loop (PIL)

for Texas Instruments™ C28035 and C28335” on page 13-6
• “New Target Function Library for Intel IPP/SSE (GNU)” on page 13-6
• “Support Added for Single Instruction Multiple Data (SIMD) with ARM Cortex-A8,

ARM Cortex-A9 , and Intel Processors” on page 13-6
• “Support Removed for Altium TASKING” on page 13-7
• “Support Removed for Infineon C166” on page 13-7
• “Support Ending for Green Hills MULTI in a Future Release” on page 13-7
• “Support Ending for Freescale MPC5xx in a Future Release” on page 13-7

64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++ and Texas
Instruments Code Composer Studio 3.3 and 4.0

Installing MATLAB & Simulink on a 64-bit Windows computer automatically installs
the 64-bit versions of your MathWorks products, including Embedded Coder software.
Now, you can use the 64-bit version of Embedded Coder software with the following 32-
bit IDEs/tool chains:

• Texas Instruments Code Composer Studio 3.3
• Texas Instruments Code Composer Studio 4.0
• Analog Devices VisualDSP++ 5.0 (update 8)

Previously, you had to install the 32-bit versions of your MathWorks products to use
Embedded Coder software with these IDEs.

For more information, see http://www.mathworks.com/hardware-support/texas-
instruments.html and http://www.mathworks.com/hardware-support/analog-
devices.html.

Also, check the Texas Instruments and Analog Devices Web sites for support information
about using their tools on 64-bit Windows platforms.

13-5

http://www.mathworks.com/hardware-support/texas-instruments.html
http://www.mathworks.com/hardware-support/texas-instruments.html
http://www.mathworks.com/hardware-support/analog-devices.html
http://www.mathworks.com/hardware-support/analog-devices.html

R2011b

Support Added for Wind River VxWorks 6.8

You can automatically generate and integrate code with the Wind River VxWorks 6.8
RTOS using makefiles via the XMakefiles feature. For more information, see Choosing
an XMakefile Configurationand Working with Wind River VxWorks RTOS.

Support Added for Serial Communications Interface with Processor-in-the-loop (PIL) for Texas
Instruments™ C28035 and C28335

This release adds support for Serial Communication Interface (SCI) communications
during processor-in-the-loop (PIL) simulations with Texas Instruments™ C28035 and
C28335 microcontrollers. Using SCI for PIL simulations is much faster than using an
IDE debugger for PIL.

For more information, see Serial Communication Interface (SCI) for Texas Instruments
C2000, Example — Performing a Model Block PIL Simulation via SCI Using Makefiles,
and the fuelsys_pil demo.

New Target Function Library for Intel IPP/SSE (GNU)

This release adds a new Target Function Library (TFL), Intel IPP/SSE (GNU), for
the GCC compiler. This library includes the Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE) code replacements.

For more information, see Code Replacement Library (CRL) and Embedded
TargetsDesktop Targets.

Support Added for Single Instruction Multiple Data (SIMD) with ARM Cortex-A8, ARM Cortex-
A9 , and Intel Processors

This release adds support for the Single Instruction Multiple Data (SIMD) capabilities of
the ARM Cortex-A8, ARM Cortex-A9 , and Intel processors. The use of SIMD instructions
increases throughput compared to traditional Single Instruction Single Data (SISD)
processing.

The following TFLs (code replacement libraries) optimize generated code for SIMD:

• GCC ARM Cortex-A8 — The GCC compiler and the ARM Cortex-A8 embedded
processor

• GCC ARM Cortex-A9 — The GCC compiler and the ARM Cortex-A9 embedded
processor

• Intel IPP/SSE (GNU) — The GCC compiler and the Intel Performance Primitives
(IPP) and Streaming SIMD Extensions (SSE)

13-6

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv17x.html#bsyqvt1-5
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv17x.html#bsyqvt1-5
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewof.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs1ol7w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs1ol7w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs24ayf-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

 Check bug reports for issues and fixes

The performance of the SIMD-enabled executable depends on several factors, including:

• Processor architecture of the target
• Optimized library support for the target
• The type and number of TFL replacements in the generated algorithmic code

Evaluate the performance of your application before and after using the TFL.

To use SIMD capabilities, enable the corresponding TFLs as described in Code
Replacement Library (CRL) and Embedded TargetsDesktop Targets.

Support Removed for Altium TASKING

Support for the Altium® TASKING IDE has been removed from the Embedded Coder
product.

Support Removed for Infineon C166

Support for the Infineon® C166® processor family has been removed from the Embedded
Coder product.

Support Ending for Green Hills MULTI in a Future Release

Support for the Green Hills MULTI IDE will end in a future release of the Embedded
Coder product.

Support Ending for Freescale MPC5xx in a Future Release

Support for the Freescale MPC5xx processor family will end in a future release of the
Embedded Coder product.

Saturation Control of Stateflow Data

A new property for Stateflow charts, Saturate on integer overflow, enables you to
control the behavior of data with signed integer types when overflow occurs. This check
box appears in the Chart properties dialog box.

Check Box When to Use This Setting Overflow Handling Example of a Result

Selected Overflow is possible for
data in your Stateflow
chart and you want

Overflows saturate to
either the minimum or

An overflow associated
with a signed 8-bit integer
saturates to –128 or +127.

13-7

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

R2011b

Check Box When to Use This Setting Overflow Handling Example of a Result

explicit saturation
protection in the
generated code.

maximum value that the
data type can represent.

Cleared You want to optimize
efficiency of the generated
code.

The behavior depends on
the C compiler you use for
generating code.

The number 130 does not
fit in a signed 8-bit integer
and wraps to –126.

Arithmetic operations in the chart for which you can enable saturation protection are:

• Unary minus: –a
• Binary operations: a + b, a – b, a * b, a / b, a ^ b
• Assignment operations: a += b, a –= b, a *= b, a /= b

For new charts, this check box is selected by default. When you open charts saved in
previous releases, the check box is cleared to maintain backward compatibility.

For more information, see Handling Integer Overflow for Chart Data in the Stateflow
User's Guide.

Custom Storage Class Properties for Managing Data Ownership and
Definition

In R2011b, use the Owner and Definition File properties of custom storage classes to
manage the definition and ownership of mpt data objects in generated code.

Previously, you could include the data definitions in generated code but could not specify
the model that defined the data. Now, Embedded Coder creates the data definitions in
the generated code according to the Owner property.

The Owner property of a custom storage class specifies the model that owns and defines
the data in the generated code. The Definition File property specifies a name for the
data definition file that Embedded Coder generates.

Compatibility Considerations

• If your legacy code exports data definitions to generated code and you now specify the
Owner property, your generated code might have duplicate data definitions. This

13-8

http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bs1ecin.html
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

 Check bug reports for issues and fixes

duplication causes a link error. In this case, remove the data definitions from the
legacy code.

• If your legacy code does not export data definitions to generated code and you now
specify the Owner property, your generated code might not contain data definitions.
This mismatch causes a link error. In this case, add the missing data definitions to
your legacy code.

Export Data Declarations to Shared Header File for Code Generation with
Model Reference

When generating code with model reference, you can export shared data declarations to a
specific header file in a shared directory.

Specify a data declaration header file in the following ways:

• For a data object: In the Code generation options section of the data object dialog
• For a model: In the Code Generation > Code Placement section of the

Configuration Parameters dialog

Specify the option to use a Shared location in the field Shared code placement in
Code Generation > Interface section of the Configuration Parameters dialog.

Target Function Library Code Replacement Enhancements

R2011b provides the following enhancements to code replacement using target function
libraries (TFLs).

Code Replacement Tool for Creating and Managing TFL Tables

R2011b provides the Code Replacement Tool, which helps you create and manage the
code replacement tables that make up a TFL. You can:

• Create a new code replacement table or import existing tables.
• Add, modify, and delete table entries. Each table entry represents a potential code

replacement for a single function or operator. You can manage multiple tables
together and copy and paste entries between tables.

• Validate tables and table entries.

13-9

R2011b

• Save code replacement tables as MATLAB files.
• Generate the customization file you use to register your code replacement tables with

code generation software.

Each code replacement table contains one or more table entries. Each table entry
represents a potential replacement, during code generation, of a single function or
operator by a custom implementation. For each table entry, you provide:

• Mapping Information, which relates a conceptual view of the function or
operator (similar to the Simulink block view of the function or operator) to a custom
implementation of that function or operator.

• Build Information, which provides header, source, or link information required for
building the custom implementation.

You can open the Code Replacement Tool in the following ways:

• Go to the Interface pane of the Configuration Parameters dialog box and click
the Custom button, which is located to the right of the Target function library
parameter.

• Use the MATLAB command crtool.

For more information about creating code replacement tables for TFLs, see Create and
Manage Code Replacement Tables Using the Code Replacement Tool.

Ability to Align Data Objects to TFL-Specified Boundaries to Boost Code Performance

R2011b provides the ability to align data objects passed into a TFL replacement function
to a specified boundary. This allows you to take advantage of target-specific function
implementations that require data to be aligned in order to optimize application
performance. To configure data alignment for a function implementation:

1 Specify the data alignment requirements in a TFL table entry. Alignment can be
specified separately for each implementation function argument or collectively for all
function arguments.

2 Specify the data alignment capabilities and syntax for one or more compilers,
and include the alignment specifications in a TFL registry entry in an
sl_customization.m or rtwTargetInfo.m file.

For more information on specifying data alignment requirements and compiler alignment
attributes, see Configure Data Alignment for Function Implementations.

13-10

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6isrc-1

 Check bug reports for issues and fixes

For additional examples of configuring data alignment for function implementations, see
the demo rtwdemo_tfl_script.

Support for Replacing Element-wise Matrix Multiply

TFLs support several nonscalar operators for replacement with custom library
functions in generated model code. R2011b adds support for replacing element-wise
matrix multiplication operations (.* operator in element-wise mode) with custom
implementations. For more information, see Map Nonscalar Operators to Target-Specific
Implementations.

Code Generation Enhancements

Redundant Condition Checks

Multiple checks of the same condition are difficult to avoid in modeling. For example, a
common modeling pattern is Switch blocks sharing the same condition check. Previously,
the generated code for multiple Switch blocks produced multiple if statements.

if (cond) {

 true_statement1;

} else {

 false_statement1; }

if (cond) {

 true_statement2;

} else {

 false_statement2;

}

In R2011b, the generated code combines these condition checks. For example, the
generated code for Switch blocks with a common condition combines these multiple if
statements.

if (cond) {

 true_statement1;

 true_statement2;

}

else {

 false_statement1;

 false_statement2;

}

This optimization reduces code size and execution time. As a result, other optimizations
for condition expressions or merged branches are enabled which reduce data copies and
RAM usage.

13-11

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1

R2011b

Loop Fusion

R2011b provides more precise data dependency analysis of the data and signals of a
nested Simulink bus. This enhancement enables more loop fusion in the generated code
which reduces code execution time and ROM, and improves code readability.

Invariant Condition Check Lifting

When a condition check is invariant to the enclosing loop and you specify loops to
be unrolled, the code generator lifts the check out of the loop. This enhancement
reduces ROM, enables additional optimizations, and improves execution speed and
code readability. For more information on loop unrolling, see Configure Loop Unrolling
Threshold.

Parameter Pooling for Stateflow and Interpreted MATLAB Function Blocks

Parameter pooling now occurs for Simulink matrix constants used as Stateflow graphical
function arguments. This enhancement reduces RAM and ROM, and improves thread
safety.

Readability Improvement for Reusable Subsystem Input and Output

The generated code for reusable subsystem input and output now eliminates redundant
operators and unnecessary parentheses. This enhancement improves code readability.

Enhanced Code Generation Optimization Using Minimum and Maximum
Values

The Optimize using specified minimum and maximum values code generation
option now takes into account the minimum and maximum values specified for
Simulink.Parameter objects even if the object is part of an expression. For example,
consider a Gain block with a gain parameter specified as an expression such as k1 + 5,
where k1 is a Simulink.Parameter object with k1.min = -10 and k1.max = 10. If
minimum and maximum values of the parameter specified in the parameter dialog box
are 0 and 20, the range calculated for this parameter expression is 0 to 15.

For more information, see Optimize Generated Code Using Specified Minimum and
Maximum Values.

13-12

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1144193.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1144193.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html

 Check bug reports for issues and fixes

New Model Advisor Check for Code Efficiency of Logic Blocks

The Simulink Model Advisor includes the following new check for code efficiency of logic
blocks: Check output types of logic blocks. The following blocks in the Simulink Logic and
Bit Operations library can use boolean or another setting for the output data type:

• Compare To Constant
• Compare To Zero
• Detect Change
• Detect Decrease
• Detect Fall Negative
• Detect Fall Nonpositive
• Detect Increase
• Detect Rise Nonnegative
• Detect Rise Positive
• Interval Test
• Interval Test Dynamic
• Logical Operator
• Relational Operator

Running this Model Advisor check helps you identify logic blocks that do not use
boolean for the output data type.

For more information about the Model Advisor, see Consulting the Model Advisor in the
Simulink documentation.

Control of Default Case Generation for Switch Statements in Generated
Code for Stateflow Charts

You can specify whether or not to generate default cases for switch statements in the
generated code for Stateflow charts. This optimization works on a per-model basis and
applies to the code generated for a state that has multiple substates. Use the following
check box on the Code Generation > Code Style pane of the Configuration Parameters
dialog box:

13-13

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bs1j4rp
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnonpositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisepositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltestdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html

R2011b

Check Box When to Use This Setting Format of Switch Statements

Selected Provide better code coverage
by checking that every
branch in the generated
code is falsifiable.

Exclude the default case
when it is unreachable.

Cleared Check for MISRA C
compliance and provide
a fallback in case of RAM
corruption.

Include a default case.

For new models, this check box is cleared by default. When you open models saved in
previous releases, the check box is also cleared to maintain backward compatibility.

For more information, see Code Generation Pane: Code Style in the Embedded Coder
Reference documentation.

Improvement to Build Process for Conflicting Identifiers

Previously, if your model contained two referenced models with the same input (or
output) port names, the model might not build because of potentially conflicting
identifiers. The failure to build happens when the generated identifiers exceed the
Maximum identifier length. In R2011b, the build process is improved to handle more
cases when two referenced models have the same input (or output) port names. For more
information, see Model Referencing Considerations.

13-14

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g1r.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnoks2-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnoks2-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259iv-1.html#bq26cbm-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f19476

 Check bug reports for issues and fixes

Update to Code Generation Verification Class cgv.Config

Compatibility Considerations

The Connectivity cgv.Config parameter has the following updates:

• pil replaces the custom value. In R2011b, you can use custom without producing a
warning or error message.

• The tasking value is not available. Specifying tasking produces an error.

License Names Not Yet Updated for Coder Product Restructuring

The Simulink Coder and Embedded Coder license name strings stored in license.dat
and returned by the license ('inuse') function have not yet been updated for
the R2011a coder product restructuring. Specifically, the license ('inuse')
function continues to return 'real-time_workshop' for Simulink Coder and
'rtw_embedded_coder' for Embedded Coder, as shown below:

>> license('inuse')

matlab

matlab_coder

real-time_workshop

rtw_embedded_coder

simulink

>>

The license name strings intentionally were not changed, in order to avoid license
management complications in situations where Release 2011a or higher is used alongside
a preR2011a release in a common operating environment. MathWorks plans to address
this issue in a future release.

For more information about using the function, see the license documentation.

New and Enhanced Demos

The following demos have been enhanced in R2011b:

Demo... Now...

rtwdemo_pmsmfoc_script Shows how you can perform system-level simulation
and algorithmic code generation using Field-Oriented

13-15

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/license.html

R2011b

Demo... Now...

Control for a Permanent Magnet Synchronous
Machine

rtwdemo_sil_pil_script Incorporates code execution profiling
rtwdemo_tfl_script Shows how you can align nonscalar data passed into

a target function library (TFL) code replacement
function

fuelsys_pil Incorporates using serial communication interface to
communicate during PIL simulation

13-16

 Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

13-17

http://www.mathworks.com/support/bugreports/

R2011a
Version: 6.0

New Features

Bug Fixes

Compatibility Considerations

R2011a

Coder Product Restructuring

• “Product Restructuring Overview” on page 14-2
• “Resources for Upgrading from Real-Time Workshop Embedded Coder” on page

14-3
• “Migration of Embedded MATLAB Coder Features to MATLAB Coder” on page

14-4
• “Migration of Embedded IDE Link and Target Support Package Features to Simulink

Coder and Embedded Coder” on page 14-4
• “Interface Changes Related to Product Restructuring” on page 14-5
• “Simulink Graphical User Interface Changes” on page 14-5

Product Restructuring Overview

In R2011a, the Embedded Coder product replaces the Real-Time Workshop® Embedded
Coder product. Additionally,

• The Simulink Coder product combines and replaces the Real-Time Workshop and
Stateflow Coder products

• The Real-Time Workshop facility for converting MATLAB code to C/C++ code,
formerly referred to as Embedded MATLAB® Coder, has migrated to the new
MATLAB Coder product.

• The previously existing Embedded IDE Link™ and Target Support Package™
products have been integrated into the new Simulink Coder and Embedded Coder
products.

The following figure shows the R2011a transitions for C/C++ code generation related
products, from the R2010b products to the new MATLAB Coder, Simulink Coder, and
Embedded Coder products.

14-2

 Check bug reports for issues and fixes

Simulink

Coder

MATLAB Coder

Embedded

Coder

Embedded

IDE Link

Target

Support
Package Stateflow

Coder

Real-Time

Workshop
Embedded

Coder

Real-Time

Workshop

embedded

Resources for Upgrading from Real-Time Workshop Embedded Coder

If you are upgrading to Embedded Coder from Real-Time Workshop Embedded Coder,
review information about compatibility and upgrade issues at the following locations:

• Release Notes for Embedded Coder (latest release), “Compatibility Summary” section
• On the MathWorks web site, in the Archived documentation, select R2010b, and view

the following tables, which are provided in the release notes for Real-Time Workshop
Embedded Coder: Compatibility Summary for Real-Time Workshop Embedded Coder
Software:

This table provides compatibility information for releases up through R2010b.
• If you use the Embedded IDE Link or Target Support Package capabilities that

now are integrated into Simulink Coder and Embedded Coder, go to the Archived
documentation and view the corresponding tables for Embedded IDE Link or Target
Support Package:

• Compatibility Summary for Embedded IDE Link (R2010b)
• Compatibility Summary for Target Support Package (R2010b)

14-3

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html

R2011a

You can also refer to the rest of the archived documentation, including release notes, for
the Real-Time Workshop, Stateflow Coder, Embedded IDE Link, and Target Support
Package products.

Migration of Embedded MATLAB Coder Features to MATLAB Coder

In R2011a, the MATLAB Coder function codegen replaces the Real-Time Workshop
function emlc. The emlc function still works in R2011a but generates a warning, and
will be removed in a future release. For more information, see Generating C/C++ Code
from MATLAB Code in the MATLAB Coder documentation.

Migration of Embedded IDE Link and Target Support Package Features to Simulink Coder and
Embedded Coder

In R2011a, the capabilities formerly provided by the Embedded IDE Link and Target
Support Package products have been integrated into Simulink Coder and Embedded
Coder. The following table summarizes the transition of the Embedded IDE Link and
Target Support Package supported hardware and software into Coder products.

Former Product Supported Hardware and
Software

Simulink Coder Embedded
Coder

Altium TASKING x
Analog Devices VisualDSP+
+

 x

Eclipse IDE x x
Green Hills MULTI x

Embedded IDE Link

Texas Instruments Code
Composer Studio

 x

Analog Devices Blackfin x
ARM x
Freescale MPC5xx x
Infineon C166 x
Texas Instruments C2000 x
Texas Instruments C5000 x
Texas Instruments C6000 x

Target Support Package

Linux OS x x

14-4

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bq8j0_1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bq8j0_1.html

 Check bug reports for issues and fixes

Former Product Supported Hardware and
Software

Simulink Coder Embedded
Coder

Windows OS x
VxWorks RTOS x

Interface Changes Related to Product Restructuring

You will see interface changes as part of restructuring the Coder products.

• In the Simulink Configuration Parameters dialog box, changes to code generation
related elements

• In Simulink menus, changes to code generation related elements
• In Simulink blocks, including block parameters and dialog boxes, and block libraries,

changes to code generation related elements
• In error messages, tool tips, demos, and product documentation, references to Real-

Time Workshop Embedded Coder, Real-Time Workshop, and Stateflow Coder and
related terms are replaced with references to the latest software

Simulink Graphical User Interface Changes

Where... Previously... Now...

Configuration Parameters
dialog box

Real-Time Workshop
pane

Code Generation pane

Model diagram window Tools > Real-Time
Workshop

Tools > Code Generation

Subsystem context menu Real-Time Workshop Code Generation
Subsystem Parameter
dialog box

Following parameters on
main pane:

• Real-Time Workshop
system code

• Real-Time Workshop
function name options

• Real-Time Workshop
function name

• Real-Time Workshop
file name options

On new Code Generation
pane and renamed:

• Function packaging
• Function name options
• Function name
• File name options
• File name (no

extension)

14-5

R2011a

Where... Previously... Now...

• Real-Time Workshop
file name (no
extension)

Compatibility Considerations

In the Help browser Contents pane, Embedded Coder is now listed with the products for
MATLAB, because Embedded Coder now supports both MATLAB Coder and Simulink
Coder workflows.

Data Management Enhancements and Changes

• “Memory Section Enhancements” on page 14-6
• “No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink Data

Objects” on page 14-6
• “Parts of Data Class Infrastructure Not Available” on page 14-7
• “No Longer Generating Pragma for Data Defined with Built-In Storage Class

ExportedGlobal, ImportedExtern, or ImportedExternPointer” on page 14-8
• “Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be

Deprecated in a Future Release” on page 14-9

Memory Section Enhancements

• Pragmas are now added to data and function declarations (prior to R2011a they were
added to definitions only); at compile time, this makes the compiler aware of memory
locations for functions and data, potentially optimizing generated code

• New function category is available for shared utilities on the Code Generation >
Memory Sections pane: Shared utility

• Referenced models can have a memory section that is different from that of the top
model for the InitTerm and Execute function categories

No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink Data Objects

You can not set the RTWInfo or CustomAttributes property of a Simulink data object
from the MATLAB Command Window or a MATLAB script. Attempts to set these
properties generate an error.

14-6

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g3q-1.html#bss4awq-1

 Check bug reports for issues and fixes

Although you cannot set RTWInfo or CustomAttributes, you can still set subproperties
of RTWInfo and CustomAttributes.

Compatibility Considerations

Operations from the MATLAB Command Window or a MATLAB script, which set the
data object property RTWInfo or CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data object as
shown below:

a = Simulink.Parameter;

b = Simulink.Parameter;

b.RTWInfo = a.RTWInfo;

b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;

 .

 .

 .

To copy a data object, use the object's deepCopy method.

a = Simulink.Parameter;

b = a.deepCopy;

.

.

.

Parts of Data Class Infrastructure Not Available

Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are not supported.

• Custom storage classes not captured in the custom storage class registration file
(csc_registration) – warning displayed since R14SP2

• Built-in custom data class attributes BitFieldName and FileName
+IncludeDelimiter – warning displayed since R2008b

Instead of... Use...

BitFieldName StructName

FileName+IncludeDelimiter HeaderFile

14-7

R2011a

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal – warning
displayed since R2006a

Compatibility Considerations

• When you use a removed feature, Simulink now generates an error.
• When loading a MAT-file that uses an unsupported feature, the load operation

suppresses the generated error such that it is not visible. In addition, MATLAB
silently deletes data that had been associated with the unsupported feature. To
prevent loss of data when loading a MAT-file, load and resave the file with R2010b or
earlier.

No Longer Generating Pragma for Data Defined with Built-In Storage Class ExportedGlobal,
ImportedExtern, or ImportedExternPointer

The code generator no longer generates a pragma around definitions or declarations for
data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

Prior to R2011a, based on model configuration parameters for specifying memory
sections and the built-in storage class defined for data, the code generator would do the
following:

For Built-In Storage Class... Generate pragma Around...

ExportedGlobal Data definition and declaration
ImportedExtern Data declaration
ImportedExternPointer Data declaration

The code generator now treats data with these built-in storage classes like custom
storage classes with no memory section specified.

Compatibility Considerations

To work around this change, select a custom storage class that uses the memory section
of interest for the data.

14-8

 Check bug reports for issues and fixes

Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be Deprecated in a
Future Release

In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are equivalent to
Simulink.Parameter and Simulink.Signal.

Compatibility Considerations

If you use the data class Simulink.CustomParameter or Simulink.CustomSignal,
Simulink posts a warning that identifies the class and describes one or more techniques
for eliminating it. You can ignore these warnings in R2011a, but consider making the
described changes now because the classes will be removed in a future release.

AUTOSAR Enhancements

The following enhancements are available in R2011a.

Calibration Parameters

Previously, the software supported only calibration parameters that were defined by a
calibration component. These parameters could be accessed by all AUTOSAR Software
Components. The AUTOSAR standard also specifies an internal calibration parameter
that is defined and accessed by only one AUTOSAR Software Component. The software
now supports:

• AUTOSAR internal calibration parameters, including the import and export of initial
values of these parameters.

• A bus object data type (AUTOSAR record type) to import and export both kinds of
calibration parameters.

For more information, see Calibration Parameters and Configure Calibration Parameters
in the Embedded Coder documentation.

Multiple Runnables from Virtual Subsystems

Previously, if a wrapper subsystem had virtual subsystems containing function-call
subsystems, you could not export the function-call subsystems as AUTOSAR runnables
from the wrapper subsystem level. Now, within a wrapper subsystem, you can group

14-9

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#bsa24_3-8
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrkabz-1

R2011a

function-call subsystems into virtual subsystems and generate runnables for these
function-call subsystems. See Configure Multiple Runnables and Export AUTOSAR
Software Component in the Embedded Coder documentation.

Support for Code Descriptor Elements

The AUTOSAR standard specifies that the XML description of an AUTOSAR Software
Component implementation must contain code descriptor elements to describe generated
source files and include header files. This feature allows AUTOSAR authoring tools that
import software components to automate the building process for source code.

Previously, the software did not generate the software component implementation file
(modelname_implementation.arxml) with these code descriptor elements. Now,
when you build a Simulink model for an AUTOSAR target, the software generates a
CODE-DESCRIPTORS element within the SWC_IMPLEMENTATION element. The CODE-
DESCRIPTORS element contains XFILE elements that provide descriptions of the
generated code.

For example, if you build the model rtwdemo_autosar_counter, the generated
file rtwdemo_autosar_counter_implementation.arxml has the following
SWC_IMPLEMENTATION element:
....

<SWC-IMPLEMENTATION>

 <SHORT-NAME>rtwdemo_autosar_counter</SHORT-NAME>

 <CODE-DESCRIPTORS>

 <CODE>

 <SHORT-NAME>Code</SHORT-NAME>

 <TYPE>SRC</TYPE>

 <XFILES>

 <XFILE>

 <SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>

 <CATEGORY>GeneratedFile</CATEGORY>

 <URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>

 <TOOL>Embedded Coder</TOOL>

 <TOOL-VERSION>5.6</TOOL-VERSION>

 </XFILE>

 <XFILE>

 <SHORT-NAME>rtwdemo_autosar_counter_h</SHORT-NAME>

 <CATEGORY>GeneratedFile</CATEGORY>

 <URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.h</URL>

 <TOOL>Embedded Coder</TOOL>

 <TOOL-VERSION>5.6</TOOL-VERSION>

 </XFILE>

 ...

 </XFILES>

 </CODE>

 </CODE-DESCRIPTORS>

 <CODE-GENERATOR>Embedded Coder 5.6 (R2011a) 26-Aug-2010</CODE-GENERATOR>

14-10

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brkgi52-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brkgi52-1

 Check bug reports for issues and fixes

 <PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>

</SWC-IMPLEMENTATION>

....

SIL and PIL Enhancements

Code Execution Profiling

You can collect execution time measurements in a specified base workspace variable
during a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation. At the
end of the simulation, you can view or analyze the measurements within the MATLAB
environment. This feature allows you to collect an execution time profile for each task
within your generated code.

The software supports code execution profiling for all types of SIL or PIL simulations
except the SIL block.

For more information, see Code Execution Profiling in the Embedded Coder
documentation.

PIL Block Parameter Tuning

R2011a supports parameter tuning for the PIL block, which allows you to change tunable
workspace parameters between or during simulations without regenerating code. This
feature also includes support for tunable structure parameters. For more information,
see I/O Support and Tunable Parameters and SIL/PIL.

Top-Model SIL/PIL and PIL Block Parameter Initialization

R2011a supports automatic definition and initialization of parameters with imported
storage classes. For more information, see I/O Support and Imported Data Definitions.

Model Block Parameter Tuning and Model Initialization

Previously, the software did not support the following features for Model block SIL/PIL:

• Simplified initialization mode
• Tunable structure parameters

R2011a now supports these features. For more information, see Configuration
Parameters Support, I/O Support, and Tunable Parameters and SIL/PIL.

14-11

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_0r-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh

R2011a

Code Generation Enhancements

Improved Code for Data Store Memory In-place Assignment

Previously, the generated code for a Data Store Memory block used data copies to
perform data store assignments. The generated code now eliminates the data copies
and performs an in-place assignment. This improvement generates less code, uses less
memory, and provides faster execution.

Improvements to Target Function Library Replacements

Enhancements to Target Function Library Replacements (TFL) include:

• If multiple TFL replacements occur within a function, temporary variables are now
reused instead of creating extra temporary variables. This enhancement reduces the
stack size during TFL replacement.

• During TFL replacement, if unnecessary temporary variables are introduced when
block output is not the returned value of the function but one of the input arguments,
code generation now removes the temporary variable. This enhancement improves
execution speed and requires less memory.

For more information, see Introduction to Code Replacement Libraries.

Improved Loop Fusion

Code generation now includes the following:

• An improved loop fusion algorithm that reduces data copies. This enhancement
decreases stack size, ROM consumption, and code generation time.

• Selectively fuses loops when the loop count is larger than the Loop unrolling
threshold. In these cases, loop unrolling allows the code generator to perform more
optimizations. In addition, the code generator groups the statements together to
assign values to the elements of a signal or parameter array, which improves data
access and code readability.

Improved Array Indexing

The generated code is optimized for more efficient array indexing. When a complex
instruction is used repeatedly in an array index, the instruction is replaced with a
temporary variable to perform the calculation more efficiently. This enhancement
improves execution speed and reduces code size.

14-12

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_o1j-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bstq6gp-1.html#bq9_kyz-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bstq6gp-1.html#bq9_kyz-1

 Check bug reports for issues and fixes

Improvement on Matrix Parameter Pooling

For matrix parameters with the same flattened value, the generated code now pools the
matrix parameters even when they have different shapes. This enhancement reduces
ROM consumption.

Readability Improvements Involving Data References

For references to the root inport and outport, as well as DWork, unnecessary parentheses
are removed from the generated code. This enhancement produces more readable code.

Code Generation Verification (CGV) API Updates

Support for Adding Multiple Callback Functions

In R2011a, the cgv.CGV class includes new methods to add callback functions. These
methods replace the cgv.CGV.addCallback method which added only a pre-execution
callback function. Now, the new methods allow CGV to invoke callback functions at
several stages of the cgv.CGV.run execution. The new methods are:

• cgv.CGV.addHeaderReportFcn adds a callback function invoked before executing
input data in the cgv.CGV object.

• cgv.CGV.addPreExecReportFcn adds a callback function invoked before executing
each input data file in the cgv.CGV object.

• cgv.CGV.addPreExecFcn adds a callback function invoked before executing each input
data file in the cgv.CGV object.

• cgv.CGV.addPostExecReportFcn adds a callback function invoked after executing
each input data file in the cgv.CGV object.

• cgv.CGV.addPostExecFcn adds a callback function invoked after executing each input
data file in the cgv.CGV object.

• cgv.CGV.addTrailerReportFcn adds a callback function invoked after executing input
data in the cgv.CGV object.

New Functionality Added to the cgv.CGV Class

The cgv.CGV class now includes the following methods:

• cgv.CGV.activateConfigSet activates the configuration set of a model.
• cgv.CGV.addBaseline adds a file of baseline data for comparison.
• cgv.CGV.copySetup creates a copy of a cgv.CGV object.

14-13

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgvclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.run.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addheaderreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addtrailerreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.activateconfigset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addbaseline.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html

R2011a

• cgv.CGV.setMode specifies the mode of execution (sim, sil, or pil).
• cgv.CGV.copySetup returns the status of the execution of the cgv.CGV object.

The cgv.CGV class now includes the following properties:

• Name

• Description

Compatibility Considerations

Previously, the cgv.CGV class included parameters that you set to perform automatic
configuration checks of your model. In R2011a, cgv.CGV class does not performs
automatic configuration checks. Instead, you can use the cgv.Config class to perform
a manual configuration check of your model. Before calling cgv.CGV.run, perform a
manual configuration check of your model. Otherwise, an error might occur later in the
process. For more information, see Programmatic Code Generation Verification.

Changes to the cgv.CGV class parameters are listed in the following table.

Parameter What Happens When
You Use Parameter?

Use This Parameter
Instead

Compatibility
Considerations

LogMode removed from
cgv.CGV

Errors LogMode parameter in
cgv.Config

To check your model
before running
CGV, pass the
LogMode parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

Processor removed
from cgv.CGV

Errors Processor parameter
in cgv.Config

To check your model
before running
CGV, pass the
Processor parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel

14-14

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.setmode.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br9mwb6-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

 Check bug reports for issues and fixes

Parameter What Happens When
You Use Parameter?

Use This Parameter
Instead

Compatibility
Considerations

method to adjust the
model configuration.

SaveModel removed
from cgv.CGV

Errors SaveModel parameter
in cgv.Config

To check your model
before running
CGV, pass the
SaveModel parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

ConfigModel removed
from cgv.CGV

Warns if set to off

Errors if set to on

cgv.Config.configModel
method

To check your model
before running
CGV, replace the
cgv.CGVConfigModel

parameter with
a call to the
cgv.Config.configModel
method

CheckInterface

parameter from
cgv.CGV

Warns if set to off

Errors if set to on

CheckOutports

parameter in
cgv.Config

To check your model
before running
CGV, pass the
CheckOutports

parameter to the
constructor for
cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

14-15

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

R2011a

Parameter What Happens When
You Use Parameter?

Use This Parameter
Instead

Compatibility
Considerations

tasking and custom
values removed from
the Connectivity
parameter of cgv.CGV

Errors pil, a new value
for the cgv.CGV
Connectivity

parameter

Replace calls to the
cgv.CGV constructor
using the parameter-
value arguments,
('Connectivity',

'tasking') or
('Connectivity',

'custom'), with
('Connectivity,

'pil').

Changes to the cgv.Config class parameters are listed in the following table:

Parameter What Happens When You Use
Parameter?

Compatibility Considerations

CheckOutports parameter
added to cgv.Config

Defaults to on. Compiles the
model. Then checks that the
model outport configuration is
compatible with the cgv.CGV
object.

If your script fixes errors
reported by cgv.Config, you
can set CheckOutports to off.

LogMode parameter from
cgv.Config

Change in behavior If you do not give a value for
LogMode, logging changes are
not made to the configuration
parameters.

MISRA-C Code Generation Objective

The Code Generation Advisor now includes a new objective for MISRA-C:2004 guidelines.
To set the new objective, open the Configuration Parameters dialog box and select
the Code Generation pane. In the Code Generation Advisor section, click the Set
objectives button to open the Code Generation Advisor dialog box. In the Available
objectives list, select MISRA-C:2004 guidelines and click the select button
(arrow pointing right) to move the objective to the Selected objectives list. For more
information on setting objectives, see Application Objectives.

14-16

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br1kmvm-1.html

 Check bug reports for issues and fixes

New Model Advisor Check for Code Efficiency of Lookup Table Blocks

The Simulink Model Advisor includes the following new check for code efficiency of
lookup table blocks: Identify lookup table blocks that generate expensive out-of-range
checking code. By default, the following blocks generate code that checks for out-of-range
breakpoint inputs:

• 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table
• Prelookup

Similarly, the Interpolation Using Prelookup block generates code that checks for out-
of-range index inputs. Running this Model Advisor check helps you identify lookup table
blocks that generate out-of-range checking code for breakpoint or index inputs.

For more information about the Model Advisor, see Consulting the Model Advisor in the
Simulink documentation.

Enhanced Code Generation Optimization

The Optimize using specified minimum and maximum values code generation
option now takes into account the minimum and maximum values specified for:

• A Simulink.Parameter object provided that it is used on its own. It does not
use these minimum and maximum values if the object is part of an expression.
For example, if a Gain block has a gain parameter specified as K1, where K1 is
defined as a Simulink.Parameter object in the base workspace, the optimization
takes the minimum and maximum values of K1 into account. However, if the
Gain block has a gain parameter of K1+5 or K1+K2+K3, where K2 and K3 are also
Simulink.Parameter objects, the optimization does not use the minimum and
maximum values of K1, K2 or K3.

• Design ranges specified on block outputs in a conditionally-executed subsystem,
except for the block outputs that are directly connected to an Outport block.

For more information, see Optimize Generated Code Using Specified Minimum and
Maximum Values.

14-17

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bstpknv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bstpknv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html

R2011a

Target Function Library Replacement Based on Computation Method for
Reciprocal Sqrt, Sine, and Cosine

Target function libraries (TFLs) now support the ability to control replacement of certain
math functions using their computation method as a distinguishing attribute. For
example,

• The rSqrt block can be configured to use either of two computation methods, Newton-
Raphson or Exact.

• The Trigonometric Function block, with Function set to sin or cos, can be
configured to use either of two approximation methods, CORDIC or None.

You can configure TFL table entries to replace these functions for one or all of the
available computation methods. For example, you could replace only Newton-Raphson
instances of the rSqrt function.

For more information, see Replace Math Functions Based on Computation Method in the
Embedded Coder documentation.

Target Function Library Support for abs, min, max, and sign functions

Embedded Coder software now supports target function library customization control for
fixed-point abs, min, max, and sign functions.

For more information, see Register Code Replacement Libraries.

C++ Encapsulation Allowed for Referenced Models in For Each
Subsystems

In previous releases, due to a code generation limitation, code could not be generated for
a For Each Subsystem block under the following conditions:

• The For Each Subsystem block directly or indirectly contains a Model block.
• The Model block references a model for which C++ encapsulation is selected.

R2011a removes this limitation. You can now generate code for a For Each Subsystem in
which a referenced model uses C++ encapsulation.

14-18

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bsziga7-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_pba-1

 Check bug reports for issues and fixes

Improved Code Generation for Portable Word Sizes

In the software-in-the-loop (SIL) simulation work flow, the model option Enable
portable word sizes allows you to take code intended for a specific target platform
and compile and run the same code on a MATLAB host platform that uses different
processor word sizes. R2011a enhances the code generated for portable word sizes by
inserting explicit casts to help protect against integral promotion differences and other
behavior differences between host and target. This potentially can reduce the incidence
of numerical differences due to host/target behavior differences. For more information,
see Configure Hardware Implementation Settings for SIL and Portable Word Sizes
Limitations in the Embedded Coder documentation.

Improved Comments in the Generated Code

R2011a provides improvements to comment generation for better readability and
understanding of the generated code. Specifically, comments are located closer to the
referring code and reflect the intent of the code. An end comment is now included at
the end of a control flow block of code. For information on customizing comments in the
generated code, see Configure Code Comments in Embedded System Code.

Replacement Data Types and Simulation Mode for Referenced Models

To replace built-in data type names with user-defined data type names in the generated
code for a referenced model, you must set the Simulation mode parameter for the
Model block to one of the following:

• Normal

• Software-in-the-loop (SIL)

• Processor-in-the-loop (PIL)

For more information, see Data Types and Referenced Model Simulation Modes in the
Simulink documentation.

Changes for Embedded IDEs and Embedded Targets

• “Feature Support for Embedded IDEs and Embedded Targets” on page 14-20
• “Execution Profiling during PIL Simulation” on page 14-21

14-19

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f26784
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br542nf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html

R2011a

• “Location of Blocks for Embedded Targets” on page 14-21
• “Location of Demos for Embedded IDEs and Embedded Targets” on page 14-22
• “Multicore Deployment with Rate-Based Multithreading” on page 14-23
• “Windows-Based Code Generation and Remote Build On Linux Target (BeagleBoard)”

on page 14-24
• “Changes to Frame-Based Processing” on page 14-24
• “New Support for Analog Devices Blackfin BF50x and BF51x Processors” on page

14-25
• “Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and Cortex-

A9 Processors” on page 14-26
• “Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI” on page 14-26
• “Support for Texas Instruments Delfino C2834x Processors” on page 14-26
• “Ending Support for Altium TASKING in a Future Release” on page 14-27
• “Ending Support for Freescale MPC5xx in a Future Release” on page 14-27
• “Ending Support for Infineon C166 in a Future Release” on page 14-27
• “Removed Methods and Arguments” on page 14-27

Feature Support for Embedded IDEs and Embedded Targets

The Embedded Coder software provides the following features as implemented in the
former Target Support Package and former Embedded IDE Link products:

• Automation Interface
• Processor-in-the-Loop (PIL) Simulation
• Execution Profiling
• Execution Profiling during PIL Simulation
• Stack Profiler
• External Mode
• Schedulers and Timing
• Makefile Generation (XMakefile)
• Target Function Library (TFL) Optimization
• Multicore Deployment for Rate Based Multithreading

14-20

 Check bug reports for issues and fixes

Note: You can only use these features in the 32-bit version of your MathWorks products.
To use these features on 64-bit hardware, install and run the 32-bit versions of your
MathWorks products.

Execution Profiling during PIL Simulation

During Processor-in-the-loop (PIL) simulation, you can profile synchronous tasks in
code running on the target. For more information, see Execution Profiling during PIL
Simulation

Location of Blocks for Embedded Targets

Blocks from the former Target Support Package product and Embedded IDE Link
product now reside under Embedded Coder in the Embedded Targets block library, as
shown.

Embedded Targets includes the following types of blocks:

14-21

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyqw3q-1.html#bsyqw3q-1ecpdp
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyqw3q-1.html#bsyqw3q-1ecpdp

R2011a

• Host Communication
• Operating Systems

• Embedded Linux
• VxWorks

• Processors

• Analog Devices Blackfin
• Analog Devices SHARC
• Analog Devices TigerSHARC
• Freescale MPC55xx MPC74xx
• Freescale MPC5xx
• Infineon C166
• Texas Instruments C2000
• Texas Instruments C5000
• Texas Instruments C6000

Location of Demos for Embedded IDEs and Embedded Targets

Demos from the former Target Support Package product and Embedded IDE Link
product now reside under Simulink Coder product help. Click the expandable links, as
shown.

14-22

 Check bug reports for issues and fixes

Multicore Deployment with Rate-Based Multithreading

You can deploy rate-based multithreading applications to multicore processors running
Embedded Linux and

VxWorks. This feature improves performance by taking advantage of multicore hardware
resources.

Also see the Running Target Applications on Multicore Processors user's guide topic.

14-23

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewvw-1.html#bszx1ja-1

R2011a

Windows-Based Code Generation and Remote Build On Linux Target (BeagleBoard)

You can generate a makefile project on a Windows host machine, transfer the makefile
project to an remote target running Linux, such as a BeagleBoard, and then build the
executable on the remote target.

Changes to Frame-Based Processing

Signal processing applications often process sequential samples of data at once as
a group, rather than one sample at a time. MathWorks documentation refers to the
former as frame-based processing and the latter as sample-based processing. A frame is
a collection of samples of data, sequential in time. To perform frame-based processing in
MathWorks products, you must have a DSP System Toolbox license.

Historically, Simulink-family products that can perform frame-based processing
propagate frame-based signals throughout a model. The frame status is an attribute of
the signals in a model, just as data type and dimensions are attributes of a signal. The
Simulink engine propagates the frame attribute of a signal with a frame bit, which can
either be on or off. When the frame bit is on, Simulink interprets the signal as frame-
based, and displays it as a double line, rather than as a single line.

Beginning in R2010b, MathWorks started to change the handling of frame-based
processing significantly. In the future, signal attributes will not include frame status.
Instead, individual blocks will control whether they treat data inputs as frames or as
samples.

To transition to this new paradigm, blocks that can perform sample- and frame-based
processing contain a new Input processing parameter that specifies the processing
behavior. You can set Input processing to Columns as channels (frame based)
or Elements as channels (sample based). The third option, Inherited (this
choice will be removed - see release notes), is a temporary selection. This
third option helps you migrate your existing models from the old paradigm to the new
paradigm.

In R2011a, the following Embedded Coder blocks received a new Input processing
parameter:

• C62X Real Forward Lattice All-Pole IIR
• C62X Complex FIR
• C62X General Real FIR
• C62X Real IIR

14-24

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealforwardlatticeallpoleiir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xcomplexfir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xgeneralrealfir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealiir.html

 Check bug reports for issues and fixes

• C64X Real Forward Lattice All-Pole IIR

Compatibility Considerations

When you load an existing model in R2011a, blocks with the new Input processing
parameter shows a setting of Inherited (this choice will be removed - see
release notes). This setting enables your existing models to work as expected until
you upgrade them. Upgrade your models as soon as possible.

To upgrade your existing models, use the slupdate function. This function detects blocks
that have Input processing set to Inherited (this choice will be remove -
see release notes). The function asks you whether to upgrade each block. If you
select yes, the function detects the status of the frame bit on the input port of the block.
If the frame bit is 1 (frames), the function sets the Input processing parameter to
Columns as channels (frame based). If the bit is 0 (samples), the function sets the
parameter to Elements as channels (sample based).

A future release will remove the frame bit and the Inherited (this choice will
be removed - see release notes) option. At that time, if you have not updated the
model, the software automatically sets the Input processing parameter. The software
uses the library default setting of the block to select either Columns as channels
(frame based) or Elements as channels (sample based). If the library default
setting does not match the parameter setting in your model, your model will produce
unexpected results. Additionally, after the removal of the frame bit, you will no longer
be able to upgrade your models using the slupdate function. Therefore, upgrade your
existing modes using slupdate as soon as possible.

New Support for Analog Devices Blackfin BF50x and BF51x Processors

You can now generate code for the following embedded processors when you use
Embedded Coder software:

• BF504
• BF504F
• BF506F
• BF512
• BF514
• BF516
• BF518

14-25

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c64xrealforwardlatticeallpoleiir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

R2011a

Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and Cortex-A9
Processors

You can use new Target Function Libraries (TFLs) to generate efficient fixed-point code
for the ARM Cortex-M3, Cortex-A8, and Cortex-A9 processors. These TFLs include GCC
compiler extensions and intrinsic functions that optimize the code Embedded Coder
generates for these processors.

Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI

Support for Green Hills MULTI software now includes versions 5.0.6 and 5.1.6.

Support for Texas Instruments Delfino C2834x Processors

You can now generate code for the following embedded processors when you use
Embedded Coder software with Texas Instruments Code Composer Studio software:

• C28341
• C28342
• C28343
• C28344
• C28345
• C28346

The new C2834x (c2834xlib) block library contains the following blocks:

• C2000 CAN Calibration Protocol
• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Input
• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Output
• C280x/C2802x/C2803x/C28x3x/C2834x I2C Receive
• C280x/C2802x/C2803x/C28x3x/C2834x I2C Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x SCI Receive
• C280x/C2802x/C2803x/C28x3x/c2834x SCI Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x SPI Receive
• C280x/C2802x/C2803x/C28x3x/c2834x SPI Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x Software Interrupt Trigger
• C28x Watchdog

14-26

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bsv7x_z-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c2000cancalibrationprotocol.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitalinput.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitaloutput.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2creceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2ctransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscireceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscitransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspireceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspitransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xsoftwareinterrupttrigger.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c28xwatchdog.html

 Check bug reports for issues and fixes

• C280x/C2803x/C28x3x/c2834x eCAN Receive
• C280x/C2803x/C28x3x/c2834x eCAN Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x eCAP
• C280x/C2802x/C2803x/C28x3x/c2834x ePWM
• C280x/C2803x/C28x3x/c2834x eQEP

Ending Support for Altium TASKING in a Future Release

Support for the Altium TASKING IDE will end in a future release of the Embedded
Coder product.

Ending Support for Freescale MPC5xx in a Future Release

Support for the Freescale MPC5xx processor family will end in a future release of the
Embedded Coder product.

Ending Support for Infineon C166 in a Future Release

Support for the Infineon C166 processor family will end in a future release of the
Embedded Coder product.

Removed Methods and Arguments

Deprecated the type property for the Code Composer Studio IDE object. For example,
entering the following text generates an error message:

infolist = IDE_Obj.list(type)

Changes to ver Function Product Arguments

The following changes have been made to ver function arguments related to embedded
code generation products:

• The new argument 'embeddedcoder' returns information about the installed
version of the Embedded Coder product.

• The argument 'ecoder', which previously returned information about the installed
version of the Real-Time Workshop Embedded Coder product, no longer works. The
software displays a “not found” warning.

For more information about using the function, see the ver documentation.

14-27

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecanreceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecantransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xecap.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xepwm.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xeqep.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ver.html

R2011a

Compatibility Considerations

If a script calls the ver function with the 'ecoder' argument, update the script
appropriately. For example, you can update the ver call to use the 'embeddedcoder'
argument.

New and Enhanced Demos

The following demos have been added in R2011a:

Demo... Shows How You Can...

coderdemo_tfl Use target function libraries (TFLs) to replace
operators and functions in code generated by
MATLAB Coder.

rtwdemo_code_coverage_script Generate model coverage and code coverage reports,
and use these reports to compare model coverage and
code coverage results for parts of a model.

rtwdemo_pmsmfoc_script Perform system-level simulation and algorithmic
code generation using Field-Oriented Control for a
Permanent Magnet Synchronous Machine.

The following demos have been enhanced in R2011a:

Demo... Now...

vipstabilize_fixpt_beagleboard Uses the new Video Capture block to simulate or
capture a video input signal in the Video Stabilization
demo.

14-28

 Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

14-29

http://www.mathworks.com/support/bugreports/

